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Abstract

T
HE recent advancements in Deep Learning (DL) models and techniques have

led to significant strides in performance across diverse tasks and modalities.

However, while the overall capabilities of models show promising growth,

our understanding of their internal reasoning processes remains limited, particularly

concerning systematic inconsistencies or errors—patterns of logical or inferential flaws.

These inconsistencies may manifest as contradictory outputs, failure to generalize

across similar tasks, or erroneous conclusions in specific contexts. Even detecting

and measuring such reasoning discrepancies is challenging, as they may arise from

opaque internal procedures, biases and imbalances in training data, or the inherent

complexity of the task. Without effective methods to detect, measure, and mitigate

these errors, there is a significant risk of deploying models that are biased, exploitable,

or logically unreliable.

This thesis aims to address these issues by producing novel methods for deep learn-

ing models that reason over knowledge graphs, natural language, and images. Firstly,

the thesis contributes two techniques for detecting and quantifying predictive inconsis-

tencies originating from opaque internal procedures in natural language and image

processing models. We systematically evaluate a wide range of model families within

novel adversarial setups that explicitly expose those internal procedures, allowing

us to quantify significant reasoning discrepancies within these models. To mitigate

inconsistencies from biases in training data, this thesis presents a data-efficient sam-

pling method to improve fairness and performance and a synthetic dataset generation

approach to rigorously evaluate and enhance reasoning in low-resource scenarios.

Finally, the thesis offers two novel techniques to explicitly optimize the models for

complex reasoning tasks in natural language and knowledge graphs. These methods

directly enhance model performance while allowing for more faithful and interpretable

exploration and exploitation during inference. Critically, by addressing reasoning

inconsistencies through quantifying and mitigating them with deep learning models,

this thesis provides a comprehensive framework to improve the robustness, fairness,

and interpretability of deep learning models across diverse tasks and modalities.
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Resumé

De seneste fremskridt inden for dyb læring (DL) modeller og teknikker har ført til en

betydelig forbedring af ydeevnen på tværs af forskellige opgaver og modaliteter. Imi-

dlertid, mens modellernes overordnede kapacitet viser lovende vækst, vores forståelse

af deres interne tankevirksomheder forbliver begrænset, især med hensyn til systema-

tiske uoverensstemmelser eller fejl — mønstre af logiske eller inferentielle mangler.

Disse uoverensstemmelser kan manifestere sig som modstridende udgange, manglende

generalisering på tværs af lignende opgaver eller fejlagtige konklusioner i specifikke

sammenhænge. Selv det er en udfordring at opdage og måle sådanne tankeforskelle,

da de kan opstå som følge af uigennemsigtige interne procedurer, skævheder og ubal-

ancer i træningsdata eller fordi denne opgave er meget kompleks. Uden effektive

metoder til at opdage, måle og afbøde disse fejl er der en betydelig risiko for at

implementere modeller, der er partiske, udnyttelige eller logisk upålidelige.

Denne afhandling har til formål at løse disse problemer ved at producere nye

metoder til dybe læringsmodeller, der ræsonnerer over videngrafer, naturligt sprog

og billeder. Den første del af afhandlingen bidrager med to teknikker til at detektere

og eksplicit kvantificere forudsigelige uoverensstemmelser, der stammer fra uigen-

nemsigtige interne procedurer i naturlige sprog- og billedbehandlingsmodeller. Vi

evaluerer systematisk en bred vifte af modelfamilier inden for nye kontradiktoriske

opsætninger, der eksplicit udsætter disse interne procedurer, giver os mulighed for

at kvantificere betydelige tankeforskelle inden for disse modeller. For at afbøde

uoverensstemmelser fra fordomme i træningsdata, denne afhandling præsenterer en

dataeffektiv prøveudtagningsmetode til forbedring af retfærdighed og ydeevne og en

syntetisk datasætgenereringsmetode til nøje at evaluere og forbedre ræsonnement

i scenarier med lav ressource. Endelig tilbyder afhandlingen to nye teknikker til

eksplicit at optimere modellerne til komplekse tankeopgaver i naturlige sprog- og

vidensgrafer. Disse metoder forbedrer direkte modelens ydeevne, samtidig med at

de giver mulighed for mere trofast og fortolkbar udforskning og udnyttelse under

inferens. Kritisk, ved at adressere tankeforskelle gennem kvantificering og afbødning

af dem med dybe læringsmodeller, denne afhandling giver en omfattende ramme for
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at forbedre robustheden, retfærdighed, og fortolkbarhed af dybe læringsmodeller på

tværs af forskellige opgaver og modaliteter.
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Executive Summary



1Executive Summary

1.1 Introduction
The emergence of data-driven learning and predictive approaches (Carbonell et al.,

1983) has unequivocally led to the question "How do machines reason?". In the spirit

of this, earlier machine learning methods (Anderson, 1983) were constructed with

ingrained mechanisms that directly explain the complete sequence for arriving at the

solution (Bratko, 1997). The transparency of the reasoning procedure allowed for

steering away from potential biases (He and Garcia, 2009) introduced through data

imbalances and the evaluation of the complexity of the designated task in terms of the

expressivity (Vapnik, 1999) of the model, as well as the sufficiency (Balasubramanian

et al., 2014; Vapnik, 1999) of the learning methodology. With the advancement of

computing resources (LeCun, 2019; Sze et al., 2017), deep learning models have

made considerable strides in pushing state-of-the-art performance in reasoning over

natural language (Wang et al., 2019b; et al., 2023), images (Russakovsky et al.,

2015; Lin et al., 2014) and knowledge graphs (Chen et al., 2020d). The most recent

advancements have been propelled by developing large models pre-trained with vast

amounts of data (Vaswani et al., 2017a; Dosovitskiy et al., 2021). However, not

all that glitters is gold. The added structural and algorithmic learning complexity

within these models (Devlin et al., 2019; Radford et al., 2018) has significantly limited

the potential to tractably interpret (Bender et al., 2021) or follow the reasoning

processes within them (Atanasova et al., 2020). Consequently, a large portion of

modern explainability methods attempt to create explanations from the final model

predictions, i.e. post-hoc (Madsen et al., 2022), through either attribution methods

producing input saliency maps (Arrieta et al., 2020) or a lens for analysing a specific

part of the model architecture (Vashishth et al., 2019b). Further, methods attempting

a complete mechanistic interpretation have not been shown to be scalable as models

get larger (Bereska and Gavves, 2024). Additionally, explainability methods have been

shown to struggle with faithfulness towards the inner workings of the model, rationale

and dataset consistency (Atanasova et al., 2020).

With these issues at heart, my dear reader, this thesis aims to create a set of tools

for directly detecting, measuring, and mitigating systematic errors in the decision-

making of deep learning models. In particular, I am interested in reasoning errors

originating from opaque processes that mask erroneous behaviour in these models,

data imbalances, and complex reasoning tasks. Towards this end, the research output
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of this thesis offers two methods for formulating adversarial setups in which the

erroneous model behaviour is detected and explicitly quantified. Following this, the

consequent research contributions focus on assessing the impact of imbalances in the

training data on the reasoning behaviour of the model and further suggesting methods

that mitigate these biases. Finally, we present two techniques that directly optimize

complex reasoning tasks in knowledge graphs and natural language.

The following introductory sections 1.1.1 to 1.1.3 detail the background concepts

and tasks relevant to the presented research contributions. This is followed by sec-

tion 1.2 with a detailed overview of the individual contributions present within this

thesis. section 1.3 provides a discussion of the mentioned research with suggested

potential future exploration directions.

1.1.1 What is Reasoning in Deep Learning?
The concept of "reasoning" is one that has been studied and discussed vividly across

the formulation of modern philosophy (Scriven, 1976). While the philosophical com-

position of this idea is not explicitly linked to this thesis, let us go on a slight tangent,

which will clarify some motivations and ideas within the presented research. The

Dictionary of Philosophy defines "reasoning" as the "The process of inferring conclusions
from the statement" (Angeles, 1981). This definition garnered a famous critique (Wal-

ton, 1990) w.r.t. the use of the word "inferring", as it is ill-defined. The alternative

formulation suggests defining an inference as the use of a rule for creating a con-

nection between a set of propositions (statements). The initial set of propositions

is the premise from which the inference starts and moves towards the conclusions.
This allows to formalize reasoning as a directional process that links the premises to

the conclusions through a rule. This, unsurprisingly, is rather similar to how models

operate in Deep Learning (LeCun et al., 2015), with the aim of connecting the inputs

to the outputs through a series of learned transformations/rules.

The advancements in deep learning have allowed the creation of architectures

(Gu et al., 2018; Yu et al., 2019) that simultaneously learn both local and global

features (Kavukcuoglu et al., 2010) through a series of intermediate transformations.

Particularly with the emergence of transformers (Vaswani et al., 2017a), that utilise

attention mechanisms (Brauwers and Frasincar, 2023) w.r.t. the input and intermedi-

ate representations, the ability of deep learning models to process complex tasks has

significantly improved. These diverse mechanisms allow the deep learning models to

perform a series of intermediate transformations that lead to the final output. This

directional process is the definition of reasoning in these models.

As the deep models grow larger, we see their increased performance across a variety

of tasks from natural language understanding and generation (Wang et al., 2019b;
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User Post: ”I love hiking
and nature photography.”
Headline: ”NASA de-
bunks flat earth theory.”

Stance: Unrelated

User Post: ”Eating meat is
essential for a healthy diet.”
Headline: ”Studies show

plant-based diets are health-
ier and more sustainable.”

Stance: Disagree

User Post: ”Climate change is
real and urgent action is needed.”

Headline: ”Scientists
warn of rising sea levels.”

Stance: Agree

User Post: ”Cryptocur-
rency is the future of finance.”
Headline: ”Experts discuss
the pros and cons of Bitcoin.”

Stance: Discuss

Legend: Unrelated Disagree Agree Discuss

Figure 1.1: Examples of stance detection with labels: Unrelated, Disagree, Agree, and Discuss.

et al., 2023; Hendrycks et al., 2021a), image processing (Russakovsky et al., 2015;

Lin et al., 2014) and complex query answering over knowledge graphs (Chen et al.,

2020d). Although the performance increase is substantial, it must be noted that the

tasks do not directly test the intermediate reasoning of the model and are evaluated

strictly based on the final output. Some of the tasks used in the thesis are introduced

in the following subsections and section 1.1.3.

1.1.1.1 Stance Detection
Stance Detection is a task in natural language processing where, given a piece of

text, the model must identify the stance or attitude expressed towards the designated

target (Küçük and Can, 2021). This target can be anything from a political issue,

a social event, or an entity. Although the label vocabulary might vary for diverse

formulations of stance detection (Hardalov et al., 2021b), an example of a task can

be seen in fig. 1.1. The task is important in several domains, such as social media

monitoring (AlDayel and Magdy, 2021) or political analysis (Lai et al., 2020), where

understanding public sentiment can help predict trends, break down and study public

opinion regarding existing discourse, or detect harmful content. It must be noted that

accomplishing this requires the model to perform contextual and logical inference

from the text and the fixed target to the linked attitude between them. This is where

reasoning errors can manifest, as models may misinterpret nuanced expressions, irony,

or indirect statements, especially when trained on imbalanced datasets.
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(a) Contradiction (b) Entailment (c) Neutral

Figure 1.2: Examples of natural language inference (NLI) reasoning with explanations and
labels.

The research output discussed in the thesis (Arakelyan et al., 2023a, Paper 3) aims

to address these challenges by proposing novel methodologies to improve stance

detection across diverse topics. Specifically, the contributions include introducing a

topic-guided diversity sampling strategy and a contrastive learning objective, both

designed to enhance the model’s ability to generalize effectively while mitigating

class imbalance issues. The topic-guided diversity sampling technique ensures that

the training data is balanced not only across classes but also among topics. This is

achieved by prioritizing the selection of examples that maximize topic diversity while

maintaining a representative sample of stance labels. The method counters the skewed

distributions commonly found in stance detection datasets, allowing models to learn

more robust and generalized representations.

1.1.1.2 Natural Language Inference
The task of textual entailment (Dagan et al., 2005), otherwise referred to as Natural

Language Inference (Bowman et al., 2015, NLI), has been widely used to probe how

well the models understand language (Condoravdi et al., 2003; Williams et al., 2017;

Nie et al., 2019). This is a pairwise input task, where given a premise and a hypothesis,

the objective is to predict if the premise entails, contradicts or is neutral towards the

hypothesis. An example of this task can be seen in fig. 1.2.

This task is rather suited for examining model reasoning patterns, as it demands a

logical and contextual understanding to predict the relationships between the premise

and the hypothesis. The main challenge arises from the complexity of language

nuances, such as ambiguity in wording and latently implied meanings and ideas,

which demand deeper semantic comprehension. To solve this task, the model must be

capable of mapping a set of transformations from premises to hypotheses, effectively

simulating a form of reasoning. Consequently, NLI has become a cornerstone task
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Rational Errors

Critic-related Failures Inductive Failures

Absent Critic Weak Critic Negation Syntactic Induction Semantic Induction

Figure 1.3: Taxonomy of Rationel Errors in human cognition (Ben-Zeev, 1998): Critic-related
and Inductive Failures.

for evaluating reasoning in deep learning models due to its structured nature and

availability of large-scale datasets like MNLI (Williams et al., 2017), SNLI (Bowman

et al., 2015) and ANLI (Nie et al., 2020).

However, one must consider the limitations inherent in current benchmarks. For

example, studies have shown that models often rely on shallow spurious correlations

(McCoy et al., 2019a; Schuster et al., 2019), such as lexical overlap (Rajaee et al.,

2022), lack generalisation out of distribution (Bhargava et al., 2021) or fail to acquire

capabilities for abstract or logical reasoning (Talmor et al., 2020). Models have even

been shown to achieve high performance without the presence of hypothesis (Guru-

rangan et al., 2018b). This misalignment underscores the importance of developing

evaluation methods that test reasoning directly, as opposed to proxy metrics.

In this thesis, we extend the exploration of NLI beyond conventional datasets by

introducing adversarially constructed examples aimed at exposing reasoning flaws

(Arakelyan et al., 2024b, Paper 1). We demonstrate that state-of-the-art Natural

Language Inference models are sensitive towards minor surface-form variations that

preserve semantics, which can cause significant inconsistencies in their inference

decisions. Critically, this behaviour contrasts with a genuine, nuanced understanding

of compositional semantics. However, it remains undetected when assessing model

accuracy on traditional benchmarks or when probing for syntactic, monotonic, and

logical reasoning capabilities. To analyze this phenomenon, we test NLI models

on adversarially crafted examples featuring semantics-preserving surface-level noise.

These examples are generated using conditional text generation, with a specific

requirement that the NLI model identifies the relationship between the original and

adversarial inputs as symmetric equivalence entailment.

1.1.2 Why does reasoning go wrong?
After we defined the notion of reasoning in the previous section, the next important

task would be trying to formalise what a reasoning error is and gauge the potential
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Input Text:
”The service was good, but the food was terrible.”

Shallow Heuristic:
Look for positive keywords

(e.g., good, happy, excellent)

Classification:
Positive

Actual Sentiment:
Negative

Error:
The presence of ”good” trig-
gers the positive classification,

ignoring the negative
context of ”terrible.”

Process

Decision

Incorrect

Legend:
• Positive keyword
• Negative keyword

Figure 1.4: Example of a shallow heuristic used in a simple sentiment analysis reasoning
process.

origins of those errors in deep learning. Prior research of errors in human rationale

(Ben-Zeev, 2012) has suggested that systematic reasoning flaws observed in human

cognition, tend to emerge not from randomness but from deliberate, rule-based pro-

cesses (Ben-Zeev, 1998). As seen in fig. 1.3, the errors arise from misapplications

of principles during learning or problem-solving, which are categorised into critic-
related failures and inductive misgeneralizations. Critic-related failures occur when

mechanisms to detect inconsistencies are missing, weak, or suppressed. For example,

a model may fail to identify contradictions in the text due to inadequate intermediate

validation. Inductive misgeneralizations arise from overgeneralizing or overspecializ-

ing rules based on patterns priorly internalised patterns. Semantic induction involves

errors due to flawed analogies or understanding of ambiguous concepts.

This is directly related to reasoning inconsistencies we find in deep learning models.

Models often exploit spurious correlations (Izmailov et al., 2022) internalized from

the training data, such as associating specific keywords with outcomes, which breaks

down in nuanced contexts (Wang et al., 2022a). A model might also be unable to

create a comprehensive internal representation for further reasoning because of the

complexity of the task (Vu et al., 2020). For instance, a model might misinterpret

sarcasm by focusing on isolated words rather than broader context (Verma et al.,

2021), or fail to produce a cohesive set of inferences when solving mathematical tasks

(Patel et al., 2021a).
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Original prediction 
(label: 1, 

'1')

Original prediction 
(label: 1, 

'1')

Original prediction 
(label: 1, 

'1')

Original prediction 
(label: 1, 

'1')

Original prediction 
(label: 1, 

'1')

Adversarial prediction 
(label: 0, 

'0')

Adversarial prediction 
(label: 0, 

'0')

Adversarial prediction 
(label: 0, 

'0')

Adversarial prediction 
(label: 0, 

'0')

Adversarial prediction 
(label: 0, 

'0')

Figure 1.5: Example of an imperceptible adversarial noise added (bottom) to the original
image (top) that changes the final prediction of the model.

1.1.2.1 Internal Procedures
Errors arising from the internal procedures of a model often stem from a misalign-

ment between the learned representations and their transitions into the final output

and the ground truth. Deep learning models perform a sequence of transformations

on input data, mapping it to intermediate representations and eventually to outputs.

However, these transformations may inadvertently optimize for surface-level patterns

rather than deeper semantic or logical relationships (McCoy et al., 2019a). For in-

stance, models frequently rely on shallow heuristics, as shown in fig. 1.4, where

specific tokens or phrases disproportionately influence predictions. These heuristics

often lead to spurious correlations that degrade performance in nuanced contexts

or under distributional shifts (Schuster et al., 2019). Moreover, models fail to per-

form necessary internal validation, leaving inconsistencies undetected and unresolved

(Minervini et al., 2020).

Another reasoning inconsistency in deep learning models is the adversarial ex-

ploitability of their internal representations (Akhtar et al., 2021). These represen-

tations encode intermediate abstractions of input data through high-dimensional

embeddings, ideally capturing semantic and logical relationships and reasoning re-

quired for the task. However, adversarial attacks exploit discrepancies within these

representations, by introducing imperceptible noise to the input as seen in fig. 1.5

(Bhambri et al., 2019). This noise can significantly shift the internal representations,
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causing erroneous predictions, thus highlighting the susceptibility of the models to-

wards non-semantic perturbations. This means maintaining consistency in inference is

a non-trivial task in deep learning.

In this thesis, I systematically explore the reasoning inconsistencies stemming from

both inductive and critic-related failures. Our findings (Arakelyan et al., 2024a, Paper
2) show that models trained from pre-trained backbones, like ResNet and ViT, are

highly vulnerable to adversarial attacks, even when attackers possess only partial

knowledge of the target model’s tuning details. I introduce backbone attacks, which

solely rely on the available feature extractors, and show that even such knowledge

can induce significant disruptions, often matching the effectiveness of white-box attack

strategies.

1.1.2.2 Data Imbalances
Imbalances in the data are a common origin for reasoning inconsistencies and

discrepancies in deep learning models (Kaur et al., 2019). They occur when certain

classes, features, or relationships are over or underrepresented in the training data,

leading to biases emerging in the predictions of the model. Imbalances can manifest

in various forms, such as class imbalance (Johnson and Khoshgoftaar, 2019a), topic

imbalance, or semantic skew (Garrido-Muñoz et al., 2021), limiting the generalization

capabilities of the model.

The presence of class imbalances means that a particular label has a dominant

presence in the training data, which can cause the model to overfit the majority class

while maintaining suboptimal reasoning patterns for minority classes, thus biasing

predictions because of over-reliance on spurious correlations (Wang and Culotta,

2020). The topic or semantic imbalances limit the diversity of relationships the model

internalizes, not allowing the model to adapt its reasoning to diverse contexts (Johnson

and Khoshgoftaar, 2019b). Although strategies for mitigating class imbalances exist

(Hasanin et al., 2019; Rendon et al., 2020), the pursuit of the same success for

imbalances of semantic representation has been studied to a lesser degree.

In this thesis, I expand the current research on data-efficient sampling, introducing

a topic-guided diversity sampling method that ensures that the training data is bal-

anced not only across classes but also across topics and semantic nuances (Arakelyan

et al., 2023a, Paper 3). By integrating this technique into model training, we show

significant improvements in model accuracy, robustness on out-of-domain evaluation

and reasoning consistency across domains.

1.1.2.3 Task Complexity
The last potential cause of reasoning inconsistencies discussed in this thesis is

connected to task complexity. Since the emergence of probabilistic predictive methods,
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various frameworks have been proposed to measure and analyse the complexity of

tasks w.r.t. the capacity of the predictive model (Blumer et al., 1989; Haussler, 1990)

and the capability of the learning algorithms (Kearns and Vazirani, 1994) to find the

optimal model for the designated task, forming what’s known as its effective capacity.

Assessing the capacity of a deep learning model is challenging as the effective ca-

pacity depends on the chosen optimization algorithm in a non-convex setting, offering

little theoretical insight (Hu et al., 2021). Consequently, quantifying the difficulty of

the task given the designated model becomes an insurmountable challenge. The task

complexity can be compounded by a plethora of factors, such as the number of reason-

ing steps required, the presence of hierarchical or nested dependencies, ambiguity in

data representation, or the inherent difficulty of capturing abstract relationships. The

inability to explicitly measure the complexity of the task, along with these challenges,

limits the means to optimize a model for generalizing towards a comprehensive logical

representation for that task, resulting in reasoning inconsistencies. For instance, in

compositional generalization tasks (Keysers et al., 2020), where the goal is to general-

ize learned components to novel combinations, models often struggle to extrapolate

rules to unseen contexts. Similarly, in mathematical reasoning (Saxton et al., 2019),

solving problems with nested or multi-step operations requires structured reasoning

pathways, retaining and recurrently reusing prior inductions and deductions across

different reasoning stages. However, models often fail to maintain consistency in

intermediate representations, leading to errors that accumulate over inference steps.

To address these challenges, the research output in the thesis presents a novel

reasoning method over knowledge graphs (Arakelyan et al., 2023b, Paper 5) that

includes learnable adaptation layers that directly optimise the intermediate answers

and representations during the inference. This boosts the generalisation towards

unseen types of queries and increases the effective capacity of the model, along with

the added benefit that the method remains data-efficient.

Another discrepancy present in modern Large Language Models (LLM) is that while

they exhibit strong performance on numerous language reasoning tasks, they often

lack a structured and faithful inference mechanism when solving complex queries.

This means that while the model might output tokens of intermediate reasoning, their

exact impact on the final answer is not explicitly known. Moreover, the reasoning

written in natural language lacks explicit verifiability because it is inherently freeform.

To overcome this, we introduce Faithful Logic-Aided Reasoning and Exploration

(FLARE) (Arakelyan et al., 2024c, Paper 6), a novel interpretable approach for travers-

ing the problem space using task decompositions. The method enhances reasoning

interpretability and faithfulness by combining task decomposition, Prolog-like logical

formalization, and LLM simulated search. Critically, FLARE addresses task complexity
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by enhancing the reasoning capacity of LLMs without solely relying on deterministic

algorithms. It supports multi-hop reasoning, task decomposition, and logical con-

sistency verification. The results highlight FLARE’s state-of-the-art performance on

several datasets, achieving significant improvements in reasoning faithfulness and

task accuracy. To overcome this, we introduce Faithful Logic-Aided Reasoning and

Exploration (FLARE), a novel interpretable approach designed to navigate the problem

space through task decompositions.

1.1.3 Reasoning with Complex Questions
The emergence of strong deep learning models in natural language (Vaswani et al.,

2017b; Touvron et al., 2023a), image processing (Dosovitskiy et al., 2021; Team, 2024)

and query answering over knowledge graphs (Galkin et al., 2024), created the necessity

for more elaborate evaluation benchmarks. The main added components for reasoning

over these new datasets (Yang et al., 2018; Kwiatkowski et al., 2019; Cobbe et al.,

2021), was that the models needed to adapt to the presence of semantic ambiguity

(Geva et al., 2021) within the questions, the necessity for multi-hop reasoning (Yang

et al., 2018), the need for adaptability to diverse logical paradigms (Saparov and

He, 2023; Zhong et al., 2021; et al., 2023) and the ability for more rigorous task

formalization, decomposition and exploration (Hendrycks et al., 2021b; Glazer et al.,

2024). In this thesis, we detect and mitigate reasoning inconsistencies in deep learning

models that operate over natural language and knowledge graphs.

1.1.3.1 Complex Multi-hop Question Answering
Complex multi-hop question-answering tasks require models to reason over am-

biguously worded information distributed across various contexts, sources, and com-

monsense or logical implications. Unlike single-hop tasks, where a direct relationship

exists between the query and the answer, multi-hop reasoning involves intermediate

steps, where the output of one step serves as input for the next. Examples include

connecting facts across sentences, documents, or knowledge graph entities to arrive

at a final answer. For instance, consider a question like, "Which author wrote the

book that inspired the movie ’Blade Runner’?" To answer this, a model must connect

multiple pieces of information: identifying that Blade Runner was inspired by the

book "Do Androids Dream of Electric Sheep?" and then recognizing that the book’s

author is Philip K. Dick. Such tasks demand robust semantic understanding, logical

consistency, and precise chaining of inferences. urrent benchmarks, such as HotpotQA

(Yang et al., 2018) and ComplexWebQuestions (Talmor and Berant, 2018), aim to

evaluate these multi-step reasoning abilities but are insufficient to assess reasoning
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faithfulness. Models might produce correct answers without following valid reasoning

paths even if they produce tokens that seem like correct intermediate justificaitions.

1.1.3.2 Complex Logical Query Answering over Knowledge Graphs
A Knowledge Graph (KG) is a knowledge base representing the relationships be-

tween entities in a relational graph structure. The flexibility of this knowledge repre-

sentation formalism allows KGs to be widely used in various domains. A Knowledge

Graph G ⊆ E ×R×E can be defined as a set of subject-predicate-object ⟨s, p, o⟩ triples,

where each triple encodes a relationship of type p ∈ R between the subject s ∈ E
and the object o ∈ E of the triple, where E and R denote the set of all entities and

relation types, respectively. A Knowledge Graph can be represented as a First-Order

Logic Knowledge Base, where each triple ⟨s, p, o⟩ denotes an atomic formula p(s, o),
with p ∈ R a binary predicate and s, o ∈ E its arguments. We are concerned with

answering logical queries over incomplete knowledge graphs. We consider queries

that use existential quantification (∃) and conjunction (∧) operations. Furthermore,

we include disjunctions (∨) and atomic negations (¬).

Consider the question “Which people are German and produced the music for the film
Constantine?”. It can be formalised as a complex queryQ ≡ ?T : country(Germany, T )∧
producerOf(Constantine, T ), where Germany and Constantine are anchor nodes, and

T is the target of the query. The answer [Q] corresponds to all the entities in the

knowledge graph that are German composers for the film Constantine. We propose a

novel method for reasoning over knowledge graphs introduced in (Arakelyan et al.,

2023b).

1.2 Scientific Contributions
1.2.1 Reasoning Inconsistencies from Internal

Processes
1.2.1.1 Paper 1: Semantic Sensitivities and Inconsistent Predictions:

Measuring the Fragility of NLI Models
Recent studies of the emergent capabilities of transformer-based Natural Language

Understanding (NLU) models have indicated that they have an understanding of

lexical and compositional semantics. I provide evidence that suggests these claims

should be taken with a grain of salt: finding that state-of-the-art Natural Language

Inference (NLI) models are sensitive towards minor semantics preserving surface-

form variations, which lead to sizable inconsistent model decisions during inference.

This behavior diverges from a genuine and robust comprehension of compositional
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Figure 1.6: The proposed framework is comprised of two components. (i) a module for gen-
erating semantics-preserving surface-form hypothesis variations and (ii) using the
generated surface for measuring semantic sensitivity and predictive inconsistency.

semantics. Notably, it does not explicitly emerge when evaluating model accuracy on

standard benchmarks or during probing for syntactic, monotonic, and logically robust

reasoning. To address this, I propose a novel framework, illustrated in fig. 1.6, for

quantifying semantic sensitivity. This framework evaluates NLI models on adversarially

generated examples containing minor semantics-preserving surface-form variations.

These adversarial examples are created using conditional text generation, with the

explicit condition that the NLI model should predict the relationship between the

original and adversarial inputs as a symmetric equivalence entailment.

I systematically examine the effects of this phenomenon across NLI models in both

in-domain and out-of-domain settings. Experimental results reveal that semantic

sensitivity leads to performance degradations of 12.92% and 23.71% on average for

in-domain and out-of-domain settings, respectively. Furthermore, through ablation

studies, I analyze this phenomenon across various models, datasets, and inference

variations, demonstrating that semantic sensitivity can cause significant inconsistencies

in model predictions.

1.2.1.2 Paper 2: With Great Backbones Comes Great Adversarial
Transferability

Advancements in self-supervised learning (SSL) for machine vision have enhanced

representation robustness and model performance, leading to the emergence of pub-

licly shared pre-trained backbones, such as ResNet and ViT models tuned with SSL
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Figure 1.7: The figure depicts all of the settings used to evaluate adversarial vulnerabilities
given different information of the target model construction. From left to right, I
simulate exhaustive varying combinations of meta-information available about
the target model during adversarial attack construction. All of the created proxy
models are used separately to assess adversarial transferability.

methods like SimCLR. Due to the computational and data demands of pre-training,

the utilization of such backbones becomes a strenuous necessity. However, employing

such backbones may imply adhering to the existing vulnerabilities towards adversarial

attacks. Prior research on adversarial robustness typically examines attacks with

either full (white-box) or no access (black-box) to the target model, but the adver-

sarial robustness of models tuned on known pre-trained backbones remains largely

unexplored. Furthermore, it is unclear which tuning meta-information is critical for

mitigating exploitation risks. In this work, I systematically study the adversarial ro-

bustness of models that use such backbones, evaluating 20000 combinations of tuning

meta-information, including fine-tuning techniques, backbone families, datasets, and

attack types, as seen in fig. 1.7. To uncover and exploit potential vulnerabilities, I

propose using proxy (surrogate) models to transfer adversarial attacks, fine-tuning

these proxies with various tuning variations to simulate different levels of knowledge

about the target. Our findings show that proxy-based attacks can reach close per-

formance to strong black-box methods with sizable budgets and closing to white-box
methods, exposing vulnerabilities even with minimal tuning knowledge. Additionally,

we introduce a naive "backbone attack", leveraging only the shared backbone to cre-

ate adversarial samples, demonstrating an efficacy surpassing black-box and close to

white-box attacks and exposing critical risks in model-sharing practices. Finally, our
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Figure 1.8: The two components of TESTED: Topic Guided Sampling (top) and training with
contrastive objective (bottom).

ablations reveal how increasing tuning meta-information impacts attack transferability,

measuring each meta-information combination.

1.2.2 Reasoning Inconsistencies from Data
1.2.2.1 Paper 3: Topic-Guided Sampling For Data-Efficient

Multi-Domain Stance Detection
Stance Detection is concerned with identifying the attitudes expressed by an au-

thor towards a target of interest. This task spans a variety of domains ranging from

social media opinion identification to detecting the stance for a legal claim. However,

the framing of the task varies within these domains, in terms of the data collection

protocol, the label dictionary and the number of available annotations. Furthermore,

these stance annotations are significantly imbalanced on a per-topic and inter-topic

basis. These make multi-domain stance detection a challenging task, requiring stan-

dardization and domain adaptation. To overcome this challenge, I propose Topic

Efficient StancE Detection (TESTED), seen in fig. 1.8, consisting of a topic-guided

diversity sampling technique and a contrastive objective that is used for fine-tuning a

stance classifier. I evaluate the method on an existing benchmark of 16 datasets with

in-domain, i.e. all topics seen and out-of-domain, i.e. unseen topics, experiments. The
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Translated Raw
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Question
Answering Dataset
For Low-Resource

Language 

  [Instructions]

Generate 10 multiple-choice questions based on the context provided
below. 
Each question must have four answer choices (1, 2, 3, 4), and the
correct answer should be indicated explicitly. 
Do not generate multiple-choice questions in any other format.
Ensure that the questions are non-trivial and cover various aspects of the
text. 
The correct answer to each question should be explicitly stated within the
paragraph:

  [Examples]
1. What is the capital of France?
   1. Paris
   2. Rome
   3. Berlin
   4. Madrid
Answer: 1. Paris
...

 [Paragraph]

The 58th Annual Grammy Awards was held on February 15, 2016, at the
Staples Center in Los Angeles. ...

Question Generation 
LLM

         Translation of 
            Questions and 

             Answers

Model Prompt

Generate Multiple Choice
Question-Answer pairs 

«Գրեմմի» 58-րդ
մրցանակաբաշխություն

Գրեմմիի 58-րդ
մրցանակաբաշխությունը (անգլ.՝ 58th Annual
Grammy Awards) կայացել
է 2016 թվականի փետրվարի 15-ին Սթեյփլս
սենթր կենտրոնում, Լոս Անջելես, Կալիֆորնիա։
Մրցանակաբաշխությունը ճանաչել է լավագույն
ձայնագրությունները, ստեղծագործությունները և
տարվա լավագույն երաժիշտներին, որոնք իրենց
գործունեությունն են
ծավալել 2014 թվականի հոկտեմբերի 1-ից
մինչև 2015 թվականի սեպտեմբերի 30-ը[1]։ 

...

58th Annual Grammy Awards

The 58th Annual Grammy Awards was held on
February 15, 2016, at the Staples Center in Los
Angeles. The ceremony recognizes the best recordings,
compositions and artists of the eligibility year, which
was from October 1, 2014, to September 30, 2015.[2] 

...

Parallel paragraph
mining with Wiki-API
and Length matching

Figure 1.9: The proposed framework is comprised of three components: (i) a module for
mining parallel paragraphs using wiki-API and length matching; (ii) generating a
synthetic question-answering dataset with an LLM using the mined English para-
graphs; (iii) translating the question-answer pairs and Filtering/Validating them
for obtaining a high-quality synthetic QA dataset in the low-resource language.

results show that our method outperforms the state-of-the-art with an average of 3.5
F1 points increase in-domain, and is more generalizable with an averaged increase

of 10.2 F1 on out-of-domain evaluation while using ≤ 10% of the training data. I

show that our sampling technique mitigates both inter- and per-topic class imbalances.

Finally, our analysis demonstrates that the contrastive learning objective allows the

model a more pronounced segmentation of samples with varying labels.

1.2.2.2 Paper 4: SynDARin: Synthesising Datasets for Automated
Reasoning in Low-Resource Languages

Question Answering (QA) datasets have been instrumental in developing and

evaluating Large Language Model (LLM) capabilities. However, such datasets are

scarce for languages other than English due to the cost and difficulties of collection

and manual annotation. This means that producing novel models and measuring

the performance of multilingual LLMs in low-resource languages is challenging. To

mitigate this, I propose SynDARin, a method for generating and validating QA datasets

for low-resource languages, seen in fig. 1.9. I utilize parallel content mining to obtain

human-curated paragraphs between English and the target language. I use the English

data as context to generate synthetic multiple-choice (MC) question-answer pairs,

which are automatically translated and further validated for quality. Combining these

with their designated non-English human-curated paragraphs from the final QA dataset.
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Figure 1.10: Given a complex query Q, CQDA adapts the neural link prediction scores for
the sub-queries to improve the interactions between them.

The method allows to maintain content quality, reduces the likelihood of factual errors,

and circumvents the need for costly annotation. To test the method, I created a QA

dataset with 1.2K samples for the Armenian language. The human evaluation shows

that 98% of the generated English data maintains quality and diversity in the question

types and topics, while the translation validation pipeline can filter out ∼ 70% of

data of poor quality. I use the dataset to benchmark state-of-the-art LLMs, showing

their inability to achieve human accuracy with some model performances closer to

random chance. This shows that the generated dataset is non-trivial and can be used

to evaluate reasoning capabilities in low-resource language.

1.2.3 Reasoning Inconsistencies from Task Complexity
1.2.3.1 Paper 5: Adapting Neural Link Predictors for Data-Efficient

Complex Query Answering
Answering complex queries on incomplete knowledge graphs is a challenging task

where a model needs to answer complex logical queries in the presence of missing

knowledge. Prior work in the literature has proposed to address this problem by

designing architectures trained end-to-end for the complex query answering task

with a reasoning process that is hard to interpret while requiring data and resource-

intensive training. Other lines of research have proposed re-using simple neural link

predictors to answer complex queries, reducing the amount of training data by orders
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FLARE

 [Search -> Answer]

 [Path 1] 
{'Result': 'yes'}

Plan 
Explanation

Aloe vera is a plant known for its medicinal
and cosmetic properties... 

Analysis

To address this question, it's essential to
understand the properties and uses of aloe
vera...

Simulation of  Code Execution 

Backtracking

Redo: product(petroleum_derived, Candidate
Variable_2)

 [Path 2]:
   11: Searching: product(petroleum_derived, _) ...

Search Results

Search: query | {'Result': 'yes'}

Multi-hop Logic Based Traversal

[Path 1]: 1: Call: query
  2: Call: combined(aloe_vera, petroleum_derived)
 3:Call: plant(aloe_vera,Candidate_0,Candidate_1)
 4: Search: plant(aloe_vera, medicinal, cosmetic)...

Plan for Answering

Define Key Concepts:
- Define Aloe Vera: Clarify the properties
and uses of aloe vera, including its
medicinal and cosmetic

Code 
Facts 

plant(aloe_vera, medicinal, cosmetic). 
product(petroleum_derived, industrial).
ingredient(emulsifier, oil, water).

Search Goal/Strategy 

query :- combined(aloe_vera,
petroleum_derived).

Relations 

combined(aloe_vera, petroleum_derived) :- 
plant(aloe_vera, _, _) , 
product(petroleum_derived, _) , 
ingredient(emulsifier, _, _).

Measurable
Faithfulness

Explainable
Exploration 

Search with
Backtracking 

LLM only
Reasoning 

Question: Do all parts of the aloe vera plant taste good?

Figure 1.11: A depiction of the plan, code and simulated search in FLARE. Each module is
generated separately and iteratively, allowing us to obtain the final answer. The
green and yellow highlighted text shows the overlap between the facts and the
relations between the code and the simulated search.

of magnitude while providing interpretable answers. The neural link predictor used

in such approaches is not explicitly optimised for the complex query answering task,

implying that its scores are not calibrated to interact together. We propose to address

these problems via CQDA, a parameter-efficient score adaptation model optimised

to re-calibrate neural link prediction scores for the complex query answering task.

While the neural link predictor is frozen, the adaptation component – which only

increases the number of model parameters by 0.03% – is trained on the downstream

complex query answering task. Furthermore, the calibration component enables us to

support reasoning over queries that include atomic negations, which was previously

impossible with link predictors. In our experiments, CQDA produces significantly

more accurate results than current state-of-the-art methods, improving from 34.4 to

35.1 Mean Reciprocal Rank values averaged across all datasets and query types while

using ≤ 30% of the available training query types. We further show that CQDA is

data-efficient, achieving competitive results with only 1% of the complex training

queries, and robust in out-of-domain evaluations.

1.2.3.2 Paper 6: FLARE: Faithful Logic-Aided Reasoning and
Exploration

Modern Question Answering (QA) and Reasoning approaches based on Large Lan-

guage Models (LLMs) commonly use prompting techniques, such as Chain-of-Thought

(CoT), assuming the resulting generation will have a more granular exploration and

reasoning over the question space and scope. However, such methods struggle with

generating outputs that are faithful to the intermediate chain of reasoning produced by

the model. On the other end of the spectrum, neuro-symbolic methods such as Faithful

CoT (F-CoT) and Logic-LM propose to combine LLMs with external symbolic solvers.
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Internal Procedures Data Imbalances Complex Reasoning

M D A M D A M D A

1. Arakelyan et al. (2024b) ✓ ✓ ✓

2. Arakelyan et al. (2024a) ✓ ✓

3. Arakelyan et al. (2023a) ✓ ✓

4. Ghazaryan et al. (2024) ✓ ✓ ✓ ✓

5. Arakelyan et al. (2023b) ✓ ✓

6. Arakelyan et al. (2024c) ✓ ✓

7. Cochez et al. (2023) ✓

Table 1.1: Contributions of referenced works across three main reasoning inconsistency
categories: Internal Procedures, Data Imbalances, and Complex Reasoning Tasks.
Each category is further divided into three contribution subsections: Method
(M), Datasets (D), and Analysis Framework For Reasoning (A). A checkmark (✓)
indicates the contribution’s relevance to the respective area. The table highlights
the distribution of efforts, showcasing where each work has made significant
contributions.

While such approaches boast a high degree of faithfulness, they usually require a

model trained for code generation and struggle with tasks that are ambiguous or

hard to formalise strictly. I introduce Faithful Logic-Aided Reasoning and Exploration

(FLARE), a novel interpretable approach for traversing the problem space using task

decompositions, seen in fig. 1.11. I use the LLM to plan a solution, formalise the query

into facts and predicates, which form the problem space, using a logic programming

code and simulate that code execution using an exhaustive multi-hop search over the

defined space. Our method allows us to compute the faithfulness of the reasoning

process w.r.t. the generated code and explicitly trace the steps of the multi-hop search

without relying on external solvers. Our methods achieve SOTA results on 7 out of 9
diverse reasoning benchmarks. I also show that model faithfulness positively correlates

with overall performance and further demonstrate that FLARE allows pinpointing the

decisive factors sufficient for and leading to the correct answer with optimal reasoning

during the multi-hop search. Our findings reveal that successful traces exhibit, on

average, a 18.1% increase in unique emergent facts, a 8.6% higher overlap between

code-defined and execution-trace relations, and a 3.6% reduction in unused code

relations.

1.3 Discussion and Future Work
The research publications within this thesis contribute to the field of deep learning

by expanding our understanding of reasoning inconsistencies and suggesting novel

ways to mitigate them across various domains such as NLP, image processing and
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reasoning over KGs. In particular, we identify and analyse three potential causes

for inconsistency: internal processes, data imbalances, and task complexity. The

contributions can be segmented into novel methods, datasets and analysis frameworks

for detecting, measuring and mitigating reasoning inconsistencies in deep learning

models, as seen in table 1.1.

1.3.1 Measuring and Mitigating Reasoning
Inconsistencies

The thesis establishes reasoning inconsistencies related to internal representations

and transitions that deep learning models learn. The papers suggest novel adversarial

setups that directly expose the susceptibility of deep learning models to shallow

heuristics, semantic misalignments, and adversarial vulnerabilities. For instance,

the semantic sensitivity of NLI models (Arakelyan et al., 2024b, Paper 1) highlights

a critical limitation in their robustness and generalization across diverse settings.

Adversarial transferability studies (Arakelyan et al., 2024a, Paper 2) reveal how shared

backbones escalate model vulnerabilities, emphasizing the need for more robust fine-

tuning techniques and vigilance in the current model-sharing practices. In both of the

publications, we provide a framework for directly detecting and measuring the extent

of reasoning inconsistencies that numerous deep learning models possess.

The thesis also includes a new method for data-efficient topic-based sampling

(Arakelyan et al., 2023a, Paper 3), which allows to circumvent the complications

with biased and inconsistent reasoning in deep learning models, arising from dataset

imbalances described in section 1.1.2.2. We directly measure the impact of mitigating

these imbalances with our method on the predictive capabilities of the model, showing

a significant performance boost both for in-domain and out-of-domain evaluations.

The models trained using our sampling method are also less susceptible to erroneous

behaviour that arises because of a dominating overrepresentation of specific topics or

semantic features. We also show that an emergent property of the contrastive learning

method we propose is that the internal representations of the model become more

segmented w.r.t. different topics, thus overall boosting the model’s effective capacity.

The thesis also contributes a method for synthetically generating question-answering

datasets in low-resource settings (Ghazaryan et al., 2024, Paper 4) with a mechanism

for automated sample verification and diversification. I constructed a human evalua-

tion for each aspect of the method and the final output and showed that the method

works for the Armenian language, which has almost no available machine learning

resources for training and evaluation. Some would argue that allegorically, the biggest

data imbalance is the availability of no data for even evaluating the reasoning capabili-
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ties of the deep learning models, which this publication addresses. Maybe some would

be wrong in this assessment, but that, my dear reader, is a discussion for a different

thesis.

To tackle the reasoning inconsistencies that emerge because of task complexity

and the limited effective capacity/expressivity of the model, I dive into two complex

query answering tasks over knowledge graphs and natural language. I introduce a

new approach for handling complex queries over knowledge graphs (Arakelyan et al.,

2023b, Paper 5), incorporating learnable adaptation layers that optimize intermedi-

ate answers and representations during the reasoning process. This enhances the

model’s ability to generalize to unseen query types, increases its effective capacity, and

maintains data efficiency as an added advantage. This allows for circumventing prior

limitations present because of task complexity and adds an ingrained tool for verifying

and adapting the results of intermediate reasoning answers.

The other aspects I explore in this thesis are the predictive inconsistencies and sub-

optimal explorations that LLMs have when reasoning in natural language. While LLMs

exhibit strong performance on numerous language reasoning tasks, they often lack a

structured and faithful inference mechanism when answering complex queries, which

does not allow the model to formalise and explore the problem efficiently. Moreover,

many prompting paradigms in natural language lack explicit verifiability because

the text is inherently freeform. We create a novel method to mitigate these issues.

Faithful Logic-Aided Reasoning and Exploration (FLARE) (Arakelyan et al., 2024c,

Paper 6), is a novel interpretable approach for traversing the problem space using

task decompositions. The method enhances reasoning interpretability and faithfulness

by combining task decomposition, Prolog-like logical formalization, and LLM simu-

lated search. Critically, FLARE addresses task complexity by enhancing the reasoning

capacity of LLMs without solely relying on deterministic algorithms and allows for

deeper model explorations within the problem. It supports multi-hop reasoning, task

decomposition, and logical consistency verification. The results highlight FLARE’s

state-of-the-art performance on several datasets, achieving significant improvements

in reasoning faithfulness and task accuracy.

1.3.2 Future Work
Currently, there is limited work on ingraining LLMs with test time compute capabili-

ties and how it impacts the effective capacity of the model and the verifiability of the

suggested reasoning lines. One natural extension for papers (Arakelyan et al., 2023b,

2024c, 5 and 6) would be able to directly use test time compute mechanisms, such as

self-refinement and others for further enriching the predictive capabilities of the mod-

els. An intriguing alternative in a similar vein would involve training a reward model
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using the formalizations and reasoning paths generated by FLARE. This approach

leverages the ability to directly execute the generated code, allowing us to sample

Prolog search paths that yield correct answers as positive examples while treating the

LLM-generated incorrect traversal simulations as negative examples. Training this type

of model would allow to further tune other LLMs with a differentiable oracle that is

capable of assessing the correctness and completeness of the search paths. This would

also allow some notion of verifiability to be ingrained into the generated search paths.

A direct extension of this can be using a strict logical decomposition and iterative

multi-hop reasoning for the query, similar to the approach in (Arakelyan et al., 2023b,

5). This would add the capability to adaptably search over intermediate answers and

prune unlikely search directions.
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Part II
Reasoning Inconsistencies from Internal

Processes



2Semantic Sensitivities and
Inconsistent Predictions:
Measuring the Fragility of NLI
Models

2.1 Introduction
Transformer-based (Vaswani et al., 2017b) Language Models (LMs) have shown

solid performance across various NLU tasks (Wang et al., 2018a, 2019a). These

advances have led to suggestions regarding the emergent capabilities of the models in

terms of syntactic (Sinha et al., 2020; Hewitt and Manning, 2019; Jawahar et al., 2019;

Warstadt and Bowman, 2020), logic (Wei et al., 2022a,b) and semantic (Kojima et al.,

2022a; Dasgupta et al., 2022) understanding. However, we present novel evidence

that indicates that these models are prone to inconsistent predictions induced by

inherent susceptibility towards semantic sensitivities.

To probe the models for these discrepancies, we formalise semantic comprehension
as the ability to distinguish logical relations within sentences through identifying

compositional semantics (Jacobson, 2014; Carnap, 1959). This means that negligible

semantic variations should not impact the inherent relations implied between the

texts, e.g. “There were beads of perspiration on his brow.” entails both “Sweat built
up upon his face.” and the slight variation “The sweat had built up on his face.”
Authentic comprehension of semantics does allow for such understanding through

discovering semantic structures and the inherent relations induced by them (Cicourel,

1991; Schiffer, 1986; Rommers et al., 2013). This means that analysing the emergent

semantic understanding within a model should minimally involve testing for sensitivity

towards semantics-preserving surface-form variations.

We particularly focus on the task of textual entailment (Dagan et al., 2005), other-

wise referred to as Natural Language Inference (Bowman et al., 2015, NLI), which has

been widely used to probe how well the models understand language (Condoravdi

et al., 2003; Williams et al., 2017; Nie et al., 2019). This is a pairwise input task,

where given a premise p and a hypothesis h, the objective is to predict if the premise

entails, contradicts or is neutral towards the hypothesis.

We propose a framework for testing semantic sensitivity within transformer-based

models trained for NLI, by creating semantics-preserving surface-form variations of the
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Figure 2.1: The proposed framework is comprised of two components. (i) a module for gen-
erating semantics-preserving surface-form hypothesis variations and (ii) using the
generated surface for measuring semantic sensitivity and predictive inconsistency.

hypothesis (see Figure 2.1). These variations are created using conditional generation

with Large Language Models (LLMs). We show that proposed candidates do not alter

the core meaning or the truth value compared to the original statement. The original

and generated sentences maintain denotative equivalence, where two sentences or

phrases might be interpreted as having the same truth value or factual content but

may carry minor variations of nuances or connotations. To ensure that the relations

are preserved within the candidates during conditional generation, we assert that

the NLI model predicts the original and generated hypothesis to symmetrically entail

each other. This indicates that the model perceives both the generated and original

hypothesis as equivalent. After introducing these variations, we evaluate the NLI

model by replacing the original hypothesis with the generated candidates. As the

candidates are indicated to be equivalent by the same NLI model, this evaluation will

indicate whether the model can recover the existent relation between the premise

hypothesis pair in the presence of minor semantic-preserving noise. We use the

samples where the model identifies the existing relation correctly from the original

premise hypothesis pair. This ensures that assessing for semantic sensitivity would not

be hindered by the discrepancies in model performance.

We systematically study the semantic sensitivity across transformers that achieve

state-of-the-art or similar results when trained on NLI datasets, namely RoBERTa (Liu

et al., 2019c), BART (Lewis et al., 2019a), DeBERTa (He et al., 2020) and DistilBart

(Sanh et al., 2019; Lewis et al., 2019a) with different parametrizations. To measure
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the effect of the phenomenon on the inconsistency of the predictions, we use three

popular English datasets - MultiNLI (Williams et al., 2017, MNLI), SNLI (Bowman

et al., 2015) and ANLI (Nie et al., 2019). The models are fine-tuned using MNLI,

which we choose for in-domain testing, as it covers a wide range of topics and is

frequently used for zero-shot and few-shot textual classification (Yin et al., 2019). We

use the same models for out-of-domain evaluation across the other NLI datasets.

Our contributions are as follows: (i) we propose a novel framework for assessing

semantic sensitivity within transformer-based language models (ii) we systematically

study the influence of this phenomenon on inconsistent predictions across various

transformer variants (iii) we show that the effect is persistent and pronounced across

both in- and out-of-domain evaluations (iv) we further complete ablations to assess

the severity of the inconsistent predictions caused by semantic sensitivity.

2.2 Related Work
Semantic comprehension is considered a fundamental building block for language

understanding (Allen, 1995). Although attempts have been made to probe language

models in terms of compositional semantic capabilities, the conclusions regarding

their emergence remain to be discussed.

2.2.1 Models appear to understand semantics
Recently a wide suite of tasks has been proposed for testing models for language

understanding (Wang et al., 2019a; Zellers et al., 2018; Ribeiro et al., 2020) with

the credence that a model with strong performance should be able to utilise seman-

tic relations when completing the tasks. In light of these, it has been shown that

transformer-based language models can be directly trained (Zhang et al., 2020; Rosset

et al., 2020) to utilise semantic structure to gain distributional information within

the task. Specifically, NLI models have also been shown to be capable of pragmatic

inferences (Jeretic et al., 2020a) with a perception of implicature (Grice, 1975) and

presupposition (Stalnaker et al., 1977; Grice, 1975).

2.2.2 Models struggle with semantics
Directly probing for a specific aspect of semantic understanding has shown that

transformer-based language models tend to struggle with semantics (Belinkov, 2022).

It has been indicated that pretraining the language models does not exploit semantic

information for entity labeling and coreference resolution (Liu et al., 2019b). Fur-

thermore, transformer attention heads only minimally capture semantic relations

(Kovaleva et al., 2019) from FrameNet (Baker et al., 1998). Studies have also shown

that NLI models, in particular, tend to struggle with lexical variations, including word
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bart-l roberta-l distilbart deberta-b deberta-l deberta-xl

MNLI(n=10000) 90.10% 90.56% 87.17% 88.77% 91.32% 91.44%

SNLI(n=10000) 87.55% 86.44% 84.37% 84.39% 88.87% 88.54%
ANLI_r1(n=1000) 46.20% 46.40% 41.40% 35.10% 49.70% 53.00%
ANLI_r2(n=1000) 31.60% 27.00% 32.80% 29.80% 32.70% 35.40%
ANLI_r3(n=1200) 33.08% 26.75% 32.75% 30.50% 35.92% 38.75%

Table 2.1: The original accuracy on testing/dev sets for various transformers (b-base, l-large,
xl-extra large) on in-domain MNLI experiments and zero-shot transfers to out-of-
domain SNLI and ANLI. The number near the dataset name designates the exact
amount of original samples in the testing set.

replacements (Glockner et al., 2018; Ivan Sanchez Carmona et al., 2018; Geiger et al.,

2020), and sequence permutations (Sinha et al., 2021).

2.2.3 Sensitivity in NLI models
Probing NLI models for language understanding has been a hallmark testing ground

for measuring their emerging capabilities (Naik et al., 2018a; Wang and Jiang, 2015;

Williams et al., 2017). A wide range of tests indicates that models trained for NLI are

prone to struggling with syntax and linguistic phenomena (Dasgupta et al., 2018; Naik

et al., 2018b; An et al., 2019; Ravichander et al., 2019; Jeretic et al., 2020b). It has

also been shown that NLI models heavily rely on lexical overlaps (Ivan Sanchez Car-

mona et al., 2018; McCoy et al., 2019b; Naik et al., 2018b) and are susceptible to

over-attending to particular words for prediction (Gururangan et al., 2018a; Clark

et al., 2019). Our line of work is associated with evaluating NLI models for mono-

tonicity reasoning (Yanaka et al., 2019) and sensitivity towards specific semantic

phenomenon (Richardson et al., 2020), such as boolean coordination, quantification,

etc. However, we systematically test NLI models for their compositional semantic

abilities and measuring the degree of inconsistence of their predictions influenced by

the phenomenon.

2.3 Methodology
We aim to create a framework for assessing semantic sensitivity within NLI models

and measure its impact on the inconsistence of model predictions. The first part of the

pipeline we propose is an adversarial semantics-preserving generation for introducing

variations within the original samples. The second part of the pipeline involves

assessment using the acquired generations.
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2.3.1 Semantics Preserving Surface-Form Variations
We formalise NLI as a pairwise input classification task. Given a dataset of premise

hypothesis pairs D = (p1, h1), . . . (pn, hn), where ∀pi ∈ P & hi ∈ H are a set of textual

tokens P,H ⊆ T , the goal is to classify the pairs as entailment, contradiction or

neutrality, i.e. C = {E,C,N}. We are also given a pre-trained language model (PLM)

M that is trained for textual entailment. Before introducing semantic variations, only

the samples where modelM predicted the label correctly are filtered, i.e. Dcorrect =
{∀(pi, hi) ∈ D :M(pi, hi) = ŷ = y}, where ŷ is the prediction and y is the original label.

This is completed to ensure that the evaluation of semantic sensitivity is not hindered

or inflated by the predictive performance and confidence of the modelM. This type

of filtering is used when probing for emergent syntactic (Sinha et al., 2021), lexical

(Jeretic et al., 2020b), and numerical (Wallace et al., 2019) reasoning capabilities. We

can see the original accuracy of NLI models and the number of samples used in the

study in Table 2.1.

To introduce semantics preserving noise within chosen samples, we complete a

two-fold refinement process. We utilise a generative LLM G, which has been fine-tuned

on natural language instructions (Wei et al., 2021; Chung et al., 2022), and prompt

it to paraphrase the original hypothesis hi, with the following prompt: Rephrase
the following sentence while preserving its original meaning: <hi>. This is not

sufficient to produce semantics-preserving variations as generative models are prone

to hallucinations (Ji et al., 2023) and not assured to produce an equivalent paraphrase.

To ensure that the generation h′
i is logically equivalent to the original sample and thus

semantics-preserving, we impose the condition that the NLI model should infer the

relation between the original and generated hypothesis as a symmetric entailment:

M(hi, h
′
i) = ŷC=E =M(h′

i, h) (2.1)

The bidirectional nature of entailment allows us to claim that sentences are logically

equivalent (Angell, 1989; Clark, 1967). We refine the proposed variation candidates

using the generator G until k candidates that satisfy the condition are produced.

2.3.2 Human Evaluation of Surface-Form Variations
To further ensure the validity of this variation generation method, we conduct a

human evaluation of the generated samples. We randomly sample 100 examples of

generated and original hypothesis pairs across all datasets and employ two annotators

to assess whether the sentences are semantically and logically equivalent within the

pair. Our results show that in 99% of the cases, the annotators marked the samples

as equivalent with an inter-annotator agreement measure of Cohen’s κ = 0.94. This
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rs/rr bart-large roberta-large distilbart deberta-base deberta-large deberta-xlarge

MNLI 6.64%/12.35% 5.71%/11.56% 9.20%/ 16.80% 6.66%/13.81% 5.38%/11.54% 5.89%/11.49%

SNLI 10.11%/15.52% 8.38%/14.98% 15.67%/23.68% 9.96%/17.01% 7.83%/13.39% 9.50%/14.69%
ANLI_r1 31.51%/42.89% 28.45%/35.01% 31.48%/52.30% 40.0%/48.99% 25.66%/37.88% 22.71%/30.73%
ANLI_r2 34.39%/51.91% 24.62%/42.80% 36.09%/57.49% 34.92%/48.47% 28.44%/44.04% 29.46%/46.46%
ANLI_r3 29.11%/51.39% 21.88%/45.00% 29.26%/52.42% 33.88%/53.17% 24.88%/44.65% 23.23%/42.37%

Table 2.2: The strict and relaxed fooling rates of different transformer models across in-
domain (MNLI) and out-of-domain (SNLI, ANLI) evaluations. On average more
than half of the labels change towards their logically contrasting counterpart.

further shows the reliability of the method for generating semantics-preserving surface

form variations. We provide further token overlap level analysis in section 2.7.

2.3.3 Evaluating Semantic Sensitivity
After obtaining k semantic variations for each hypothesis, we test the semantic

sensitivity of the model by replacing the original hypothesis hi with the candidates

{h′1
i , . . . h

′k
i } and making a prediction with the NLI modelM. As the proposed vari-

ations are logically equivalent to the original, we want to test if the new model

prediction would vary compared to the original.

R(pi, hi, h
′j
i ,O) =

1,O(M(pi, hi),M(pi, h
′j
i )) = 0

0,O(M(pi, hi),M(pi, h
′j
i )) = 1

(2.2)

Here O : C × C → {0, 1} is a boolean matching operator between the labels

predicted with original hypothesis hi and the surface-form variations h′j
i . A change

in the label would imply that the model is semantically sensitive and the original

correct prediction is inconsistent with the label produced for the semantics preserving

surface-form variation. A graphical representation can be seen in Figure 2.5. We use

two metrics to measure semantic sensitivity within NLI models, both of which are

derivative formulations of a Fooling Rate (Moosavi-Dezfooli et al., 2017), which is

used for assessing the success of adversarial attacks (Chakraborty et al., 2018). Given

k possible surface-form variations for the hypothesis, we test if at least one of the

candidates would be able to cause a label change compared to the original prediction,

which can be formalised as:

rr =
∑n′

i 1

[
∃j ∈ [1, k],R(pi, hi, h

′j
i ,=) ̸= 1

]
n′ . (2.3)
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Here n′ is the number of correctly answered original samples, and the matching

operator O is a simple equality checking operator "=". We refer to this metric as

a relaxed Fooling Rate. To measure more drastic label changes, i.e. entailment to

contradiction and vice versa, we also define a stricter version of Equation 2.3.

rs =
∑n′

i 1

[
∃j ∈ [1, k],R(pi, hi, h

′j
i ,=s) ̸= 1

]
n′ . (2.4)

We replace standard equality for the operator O in Equation 2.3 with a strict

counterpart that matches only if the predictions are direct opposites, i.e. entailment↔
contradiction. It must be noted that the neutral class does not have a direct opposite;

thus, the metric for this label remains unchanged. It can be concluded that the

inequality rs ≤ rr ≤ 1 trivially holds when using these metrics.

2.4 Experimental Setup
2.4.1 Model Details
2.4.2 Semantics preserving Generation

To generate and refine semantic variations of the original hypothesis, we chose

flan-t5-xl as the generation model G. It is an instruction-tuned LLM that has shown

close state-of-the-art performance in tasks such as paraphrasing, zero and few shot

generation, chain of thought reasoning (CoT), and multi-task language understanding

(Chung et al., 2022). For each of the selected hypotheses, we produce k = 5 unique

semantics-preserving variations. To ensure diversity and consistency of the generated

text while avoiding computationally expensive exhaustive search, we use a group beam

search (Vijayakumar et al., 2016) with a temperature t ∈ [0.3, 0.6] and a maximum

output of 40 tokens throughout the generation and refinement procedure. We also

further diversify the generation by using the recipe from Li et al. (2016).

2.4.3 NLI models
We systematically experiment with transformer architectures that are fine-tuned on

MNLI, which exhibit state-of-the-art or close predictive accuracy on the dataset. We

specifically choose bart-large (Lewis et al., 2019a), roberta-large (Liu et al., 2019c),

deberta-base, deberta-large, deberta-xlarge (He et al., 2020) and distilbart (Sanh et al.,

2019). These PLMs are taken without change from their original studies through the

Transformers library (Wolf et al., 2020), ensuring the complete reproducibility of the
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Figure 2.2: In- and out-of-domain fooling rate of DeBERTa of varied sizes, which are measured
on MNLI (left) and SNLI (right). Similarly, rs and rr represent the strict and
relaxed fooling rates, respectively.

results. To observe the effect in an out-of-domain setup, we also evaluate these models

on SNLI and ANLI in a zero-shot transfer setting.

2.5 Results and Analysis
This section presents the results and analyses of our semantic sensitivity evaluation

framework along with a suite of ablations analysing the phenomenon across various

transformer sizes, domains, and label space. Furthermore, we measure the impact of

the phenomenon on the inconsistent predictive behaviour of NLI models.

2.5.1 Semantic Sensitivity
2.5.2 In-domain

We evaluate several PLMs trained on MNLI using our experiments presented in

Table 2.2. The results show that models are limited in their comprehension of composi-

tional semantics as the relaxed fooling rate on in-domain experimentation averages at

rr = 12.9%. This is further reinforced by the fact that more than half, rs = 6.58% of the

label changes occur with strict inequality. This means that minor semantics-preserving

changes lead to a sizable shift in model predictions, even prompting towards the oppo-

site decision edge half the time. The behaviour is consistent across all the transformers

and leads us to believe that samples that changed labels after surface-form variations

showcase the inconsistent predictive nature of the models. We further elaborate on

this in the next section. Consequently, semantically equivalent variations evidently

hinder the decision-making of the NLI models, prompting us to believe that models

have limited understanding w.r.t. semantic structure and logical relation, even when

the model is trained on texts from the same distribution.
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2.5.3 Out-of-domain
We also probe the NLI models in an out-of-domain zero-shot setting to assess the

transferability of compositional semantic knowledge. Our results in Table 2.2 show

that the discrepancies and limitations in semantic comprehension are even more

pronounced in this setting. We see an averaged relaxed fooling rate of rr = 23.7%,

with the maximum at 57.49%, which is only marginally better than a majority voting

baseline. It must be noted that because different datasets have varying numbers of

samples, the average is weighted w.r.t. the number of sampled instances from the

particular dataset in the experiment. The results on out-of-domain evaluation once

again follow the pattern that more than half, rs = 15.8% of the samples switch the

labels to their logically contrasting counterparts. This shows that zero-shot transfer

further amplifies the limitations that NLI models have for using semantic structures and

preserving logical relations. This further suggests that the semantic variations where a

label change occurs are likely to be originally predicted correctly as an inconsistent

guess. It follows, that although PLMs fine-tuned on MNLI are widely used for zero-shot

classification, their effectiveness diminishes if the classification tasks require syntactic

understanding. Indeed, model effectiveness declines and the fooling rates rise as the

tasks become more challenging, requiring greater syntactic knowledge, as we can see

from the comparison of the results from SNLI to ANLI.

2.5.4 Effects of distillation
Next, we want to probe if the susceptibility towards semantic noise is transferred

during model distillation. Thus, we use DistilBart that is distilled from a larger pre-

trained BART model. While model accuracy remains comparable to the original model

in Table 2.1, the distilled version struggles sizeably more with surface-form variations.

On average, across in- and out-of- domain evaluation, the distilled NLI model is more

sensitive than the original in terms of relaxed fooling rate by △rr = 18.4%. The effect

of supposed inconsistence is amplified when observing the strict fooling rate, where

on average rr

rs
≤ 1.5. This indicates that during distillation, models are bound to forget

the knowledge regarding compositional semantics making it harder to preserve the

logical equivalence during inference.

2.5.5 Effects of model size
We also test how semantics-preserving noise affects models of different sizes and

parametrization (see Figure 2.2). Although for in-domain setup, the relaxed fooling

rate metrics marginally drop as the models get bigger, the same cannot be observed

in out-of-domain setup. It is evident that bigger PLMs from our study are almost as

restricted in semantic comprehension as their smaller counterparts. This indicates that
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rs/rr (y = E) rs/rr (y = N) rs/rr (y = C) rs/rr

MNLI 2.78%/13.41% 14.33%/14.33% 3.69%/11.17% 6.58%/12.92%

SNLI 9.54%/18.73% 19.42%/19.42% 2.92%/11.82% 10.24%/16.54%
ANLI_r1 21.64%/41.97% 38.62%/38.62% 29.17%/44.57% 29.97%/41.30%
ANLI_r2 20.84%/46.28% 49.41%/49.41% 21.89%/50.80% 31.32%/48.53%
ANLI_r3 11.65%/52.00% 47.18%/47.18% 16.42%/46.50% 27.04%/48.17%

Table 2.3: Fooling rate averaged over all models. rs represents the strict fooling rate, in which
case the predicted label of the evaluation pair is opposite to the original label y.
rr measures the proportion of label change. y ∈ {E, N, C} group the (p, h) pairs
by their semantic relation, representing entailment, neutrality, and contradiction,
respectively.

emergent semantic capabilities are not only tied to model size, but also widely depend

upon the choice of the training dataset.

2.5.6 Severity of Inconsistent Predictions
2.5.7 Consistency across label space

To analyse the extent of semantic sensitivities within NLI models we test the effect

across all the classes in the label spaces, presented in Table 2.3. The per-class break-

down of the strict and relaxed fooling rate indicates that the effect is consistent across

the whole label space. This allows us to conclude that the observed limitations in

compositional semantic understanding are not caused by class imbalances and are not

specific to a particular set of examples. We see the increased fooling rate across all of

the labels when comparing in-domain and out-of-domain experiments. This reinforces

the prior indications regarding models’ inability to use semantic structure to preserve

inherent relations within the data, as all logical relations attain rather similar amounts

of fooling rate during direct evaluation.

2.5.8 Distribution shift in decision making
Recall that we want to measure the impact of semantics-preserving surface-form

variations on NLI models. We study the predictive distributional shift within the

samples that cause a changed model prediction. To do this, we initially split the

samples into two categories considering whether the sample induced a change of

the original prediction within the NLI model. We further average the probability

distribution of labels obtained from the final softmax layer of the model for these

two categories. We measure the differences between the two distributions with

two statistical tests. To evaluate the relative entropy between them, we use Jensen-

Shanon Divergence (Fuglede and Topsoe, 2004), a symmetric, non-negative, and
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Figure 2.3: Divergence of predictive probability distribution between (p, h) and (p, h′) mea-
sured across the datasets (ANLI is averaged over the rounds) and averaged over
all models. All evaluation pairs are split into two groups based on whether they
manage to flip the original label. Two divergence metrics are shown – JS diver-
gence (left) and KS divergence (right).

bounded metric for assessing the similarity between two distributions, JSD(P∥Q) =
1
2D(P∥M) + 1

2D(Q∥M), where D is the Kullback–Leibler divergence (Joyce, 2011).

We verify the statistical significance of our findings with the Kolmogorov–Smirnov test

(Berger and Zhou, 2014), which shows if the two sets of samples are likely to come

from the same distribution.

Our results in Figure 2.3 show a significant distribution shift when assessing

semantics-preserving surface-form variations. The cosine distance in the sentence

embedding space between the generated and original samples is negligible at 0.04.

As the absolute cosine similarity values possess limited interpretable meaning, we

further explore the distributions of cosine distances towards original samples for the

examples that do and do not induce label changes. We measure the Jansen-Shannon

divergence of these two distributions at 0.001, implying they are strongly similar. This

reinforces the hypothesis that surface-form variations produce logically equivalent

samples with minor distance in the embedding space regardless of the induced label

changes. However, despite minor changes in the semantic composition, we see a

sizable change in the final predictive distribution of the NLI models. We see a sig-

nificant rise both in Jensen-Shannon divergence and Kalmogorov-Smirnov metric,

△JSD = 0.51 and △K-S = 0.54, when comparing the examples where the model

prediction has changed compared to the original. This indicates that the generated

variations do not cause negligible change within model prediction, but rather can be

considered adversarial for the model. It shows that the limited capabilities to utilise

syntactic information cause the model to significantly change the final prediction given
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Figure 2.4: Standard deviation σ of predicted label probabilities (obtained from the final
softmax layer of the model) averaged for original premise-hypothesis pair (left),
surface-form variations that did not cause label changes (mid) and did induce
label change (right). The bigger σ, the more confident the model is w.r.t. the
predictions. The results are averaged over all models.

minuscule variations, which is an inconsistent predictive behaviour. Given that we

initially sampled examples that the models answered correctly, these results assert our

belief that the models do not display consistent predictive behaviour despite having

equivalent inputs. This shows that albeit the strong model performance presented

in Table 2.1, there is masked degeneration and discrepancies within the NLI models

stemming from semantic sensitivity. Our method allows for explicitly quantifying the

degree of semantic sensitivity within PLMs and allows to measure the impact of that

sensitivity on the decision-making process of the model.

2.5.9 Semantic-Sensitivity and decision variations
We lastly analyse the standard deviation within the predicted label distribution

produced from the softmax of the model. We compute the standard deviation for

the distribution of original premise hypothesis predictions and compare it with a

replacement that does not and does cause label changes in PLM classification, see

Figure 2.4. For reference, the upper bound for standard deviation in this 3 class setting
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happens when the model is greatly confident in one of the classes, i.e. softamx =
[1, 0, 0]→ σmax = 0.471. Bigger σ on average implies more confident answers by the

PLM. It can be observed that the average predictions with the original samples have a

great degree of confidence. We see an interesting phenomenon where the predictive

confidence slightly rises across most of the datasets for the cases where the model is

able to recover the inherent textual relations. However, when faced with examples

that cause label changes, there is a significant drop of △σ = 0.1 in the standard

deviation averaged across the datasets. This signifies that predictive confidence sizably

degrades when the model struggles to recover the existent relations because of slight

semantics-preserving variations. That further indicates that NLI models are susceptible

to semantic sensitivity and have limited knowledge of compositional semantics, which

can lead to the degradation of predictive confidence and incidentally inconsistent

predictions.

2.6 Conclusion
We present a novel framework for assessing semantic sensitivity in NLI models

through generating semantics-preserving variations. Our systematic study of the

phenomenon across various datasets and transformer-based PLMs shows that the

models consistently struggle with variations requiring knowledge of compositional

semantics. This performance deterioration happens across the whole label space,

almost regardless of model size. We measure the impact of semantic-sensitivity and

show that it diminishes models’ predictive confidence and can lead to predictive

inconsistency.

Limitations
In our work, we cover the semantic-sensitivity that can be found within NLI models.

However, the framework can be applied to a wider range of classification tasks. The

benchmark can be extended with more datasets and further enhanced with larger

human evaluation. Also, we covered PLMs specifically trained for NLI; however, it

would be great to cover bigger LLMs, in particular w.r.t. their emergent zero-shot

capabilities. Another limitation is that we only cover English-based language models

and do not test in multi-lingual or cross-lingual settings.

Ethics Statement
Our work completes an analysis of numerous models w.r.t. their decision inconsis-

tency induced by semantic surface form variations. We show that models are somewhat
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unable to handle logically and semantically equivalent sentences, which would lead to

an inconsistent use across various domains and applications. Our generation method

does not induce any further exploitation threat and can only be used for measuring the

above-mentioned inconsistencies. We exclusively use open source publicly accessible

data and models within our experimentations.
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Dataset Fuzzy token match % average length h average length h′ average token overlap

mnli 84.83 14.31 14.14 13.25
snli 81.55 10.81 11.21 10.38
anli_r1 87.59 17.3 17.02 13.73
anli_r2 86.49 15.99 15.84 12.8
anli_r3 85.17 14.32 14.29 11.27

Table 2.4: Percentages of token matches and other statistics.

2.7 Appendices
2.7.1 Evaluation under Label change

To assess the extent of the impact of semantic sensitivity, we employ an evaluation

under label change. This means we consider the examples that changed the original

prediction of the model after a surface-form variation replaced the original hypothesis.

A graphical representation of this can be seen in Figure 2.5. It must be noted that we

use only the samples that the model originally predicted correctly to avoid incorrect

assessment regarding the reasoning behind the false predictions. Our primary aim is

to measure the semantic sensitivity within the model predictions and the extent of

inconsistency it causes.

2.7.2 Token Level-Differences of the generated
variations

We further explore the difference between surface-form variations and original

examples by conducting a token-level analysis for each pair (h, h′). We compute the

average amount of tokens present for the original and generated hypothesis and use

fuzzy and exact matching to assess the overlap of tokens on average for each dataset.

The results can be seen in Table 2.4. The results show that the generated and original

examples have a high token level overlap which further reinforces the idea that surface

form variations are close both syntactically, in the embedding space and logically.
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3With Great Backbones Comes
Great Adversarial
Transferability

3.1 Introduction
Machine vision models pre-trained with massive amounts of data and using self-

supervised techniques (Newell and Deng, 2020) are shown to be robust and highly

performing(Goyal et al., 2021a; Goldblum et al., 2024) feature-extracting backbones

(Elharrouss et al., 2022; Han et al., 2022), which are further used in a variety of tasks,

from classification (Atito et al., 2021; Chen et al., 2020b) to semantic segmentation

(Ziegler and Asano, 2022). However, creating such backbones incurs substantial

data annotation (Jing and Tian, 2020) and computational costs (Han et al., 2022),

consequently rendering the use of such publicly available pre-trained backbones the

most common and efficient solution for researchers and engineers alike. Prior works

have focused on analysing safety and adversarial robustness with complete, i.e. white-
box (Porkodi et al., 2018) or no, i.e. black-box (Bhambri et al., 2019) knowledge of

the target model weights, fine-tuning data, fine-tuning techniques and other tuning

meta-information. Although, in practice, an attacker can access partial knowledge

(Lord et al., 2022; Zhu et al., 2022a; Carlini et al., 2022) of how the targeted model

was produced, i.e. original backbone weights, tuning recipe, etc., the adversarial

robustness of models tuned on a downstream task from a given pre-trained backbone

remains largely underexplored. We refer to settings with partial knowledge of target

model constructions meta-information as grey-box. This is important both for research

and production settings because with an increased usage (Goldblum et al., 2023)

of publically available pre-trained backbones for downstream applications, we are

incapable of assessing the potential exploitation susceptibility and inherent risks within

models tuned on top of them and subsequently enhance future pre-trained backbone

sharing practices.

In this work, we systematically explore the safety towards adversarial attacks

within the models tuned on a downstream classification task from a known publically

available backbone pre-trained with a self-supervised objective. We further explicitly

measure the effect of the target model construction meta-information by simulating

different levels of its availability during the adversarial attack. For this purpose, we
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Figure 3.1: The figure depicts all of the settings used to evaluate adversarial vulnerabilities
given different information of the target model construction. From left to right,
we simulate exhaustive varying combinations of meta-information available about
the target model during adversarial attack construction. All of the created proxy
models are used separately to assess adversarial transferability.

initially train 352 diverse models from 21 families of commonly used pre-trained

backbones using 4 different fine-tuning techniques and 4 datasets. We fix each of

these networks as a potential target model and transfer adversarial attacks using all of

the other models produced from the same backbones as proxy surrogates (Qin et al.,

2023; Lord et al., 2022) for adversarial attack construction. Each surrogate model

simulates varying levels of knowledge availability w.r.t. target model construction on

top of the available backbone during adversarial attack construction. This constitutes

approximately 20000 adversarial transferability comparisons between target and proxy

pairs across all model families and meta-information variations. By assessing the

adversarial transferability of attacks from these surrogate models, we are able to

explicitly measure the impact of the availability of each meta-information combination

about the final target model during adversarial sample generation.

We further introduce a naive exploitation method referred to as backbone attacks
that utilizes only the pre-trained feature extractor for adversarial sample construction.

The attack uses projected gradient descent over the representation space to disentangle

the features of similar examples. Our results show that both proxy models and even

simplistic backbone attacks are capable of surpassing strong query-based black-box
methods and closing to white-box performance. The findings indicate that backbone at-
tacks, where the attacker lacks meta-information about the target model, are generally
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more effective than attempts to generate adversarial samples with limited knowledge.

This highlights the vulnerability of models built on publicly available backbones.

Our ablations show that having access to the weights of the pre-trained backbone is
functionally equivalent to possessing all other meta-information about the target model
when performing adversarial attacks. We compare these two scenarios and show

that both lead to similar vulnerabilities, highlighting the interchangeable nature of

these knowledge types in attack effectiveness. Our results emphasize the risks in

sharing and deploying pre-trained backbones, particularly concerning the disclosure

of meta-information. Our experimental framework can be seen in fig. 3.1.

Toward this end, our contributions are as follows:

• We introduce, formalize and systematically study the grey-box adversarial set-

ting, which reflects realistic scenarios where attackers have partial knowledge

of target model construction, such as access to pre-trained backbone weights

and/or fine-tuning meta-information.

• We simulate over 20, 000 adversarial transferability comparisons, evaluating the

impact of varying levels of meta-information availability about target models

during attack construction.

• We propose a naive attack method, backbone attacks, which leverages the

pre-trained backbone’s representation space for adversarial sample generation,

demonstrating that even such a simplistic approach can achieve stronger per-

formance compared to a query-based black-box method and often approaches

white-box attack effectiveness.

• We show that access to pre-trained backbone weights alone enables adversarial

attacks as effectively as access to the full meta-information about the target

model, emphasizing the inherent vulnerabilities in publicly available pre-trained

backbones.

3.2 Related Work
3.2.1 Self Supervised Learning

With the emergence of massive unannotated datasets in machine vision, such as

YFCC100M(Thomee et al., 2016), ImageNet(Deng et al., 2009), CIFAR (Krizhevsky

et al., 2009) and others Self Supervised Learning (SSL) techniques (Jing and Tian,

2021) became increasingly more popular for pre-training the models (Newell and

Deng, 2020). This prompted the creation of various families of SSL objectives, such

as colorization prediction (Zhang et al., 2016), jigsaw puzzle solving (Noroozi and
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Favaro, 2016) with further invariance constraints (Misra and van der Maaten, 2020,

PIRL), non-parametric instance discrimination (Wu et al., 2018, NPID, NPID++),

unsupervised clustering (Caron et al., 2018), rotation prediction (Gidaris et al., 2018,

RotNet), sample clustering with cluster assignment constraints(Caron et al., 2020,

SwAV), contrastive representation entanglement (Chen et al., 2020a, SimCLR), self-

distillation without labels (Caron et al., 2021, DINO) and others (Jing and Tian, 2021).

Numerous architectures, like AlexNet (Krizhevsky et al., 2012), variants of ResNet(He

et al., 2016) and visual transformers (Dosovitskiy et al., 2021; Touvron et al., 2021;

Ali et al., 2021) were trained using these SSL methods and shared for public use, thus

forming the set of widely used pre-trained backbones. We obtain all of these models

trained with different self-supervised objectives from their original designated studies

summarised in VISSL (Goyal et al., 2021b). An exhaustive list of all models can be

seen in table 3.1.

3.2.2 Adversarial Attacks
The availability of pre-trained backbones allows to test them for vulnerabilities

towards adversarial attacks, which are learnable imperceptible perturbations generated

to mislead models into making incorrect predictions (Szegedy et al., 2014; Goodfellow

et al., 2015). Several attack strategies have been studied, including single-step

fast gradient descent (Goodfellow et al., 2014; Kurakin et al., 2017, FGSM), and

computationally more expensive optimization-based attacks, such as projected gradient

descent based attacks (Madry et al., 2018, PGD), CW (Carlini and Wagner, 2017),

JSMA (Papernot et al., 2017), and others (Dong et al., 2018; Moosavi-Dezfooli et al.,

2016; Madry et al., 2018). All of these attacks assume complete access to the target

model, which is known as the white-box (Papernot et al., 2017) setting. These

attacks can be targeted toward confusing the model to infer a specific wrong class

or untargeted with the desire that it infers any incorrect label. However, an opposite

setting with no information, referred to as black-box (Papernot et al., 2017), has

also been explored as a more practical setting. The methods involve attempts at

gradient estimation (Chen et al., 2017b; Ilyas et al., 2018; Bhagoji et al., 2018),

adversarial transferability (Papernot et al., 2017; Chen et al., 2020c), local search

(Narodytska and Kasiviswanathan, 2016; Brendel et al., 2018; Li et al., 2019; Moon

et al., 2019), combinatorial perturbations (Moon et al., 2019) and others (Bhambri

et al., 2019). However, these methods also require massive sample query budgets

ranging from [103, 105] queries or computational resources creating each adversarial

sample (Bhambri et al., 2019). Compared to these, we introduce a novel setup with

the knowledge of the pre-trained backbone and varying levels of partially known

target model tuning meta-information during adversarial attack construction, which
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we call grey-box. We show that even simple naive attacks are capable of exploiting

better than black-box attacks without the need for significantly querying the target

model.

3.2.3 Adversarial Transferability
Our work is also aligned with adversarial transferability, where adversarial examples

generated for one model can mislead other models, even without access to the target

model weights or training data. This property poses significant security concerns, as

it allows for effective black-box attacks on systems with no direct access (Papernot

et al., 2017; Ilyas et al., 2018). Efforts can be divided into generation-based and

optimisation methods. Generative methods have emerged as an alternative approach

to iterative attacks, where adversarial generators are trained to produce transferable

perturbations. For instance, Poursaeed et al. (2018) employed autoencoders trained

on white-box models to generate adversarial examples. Most of the attacks aiming

for adversarial transferability strongly depend on the availability of data from the

target domain (Carlini and Wagner, 2017; Papernot et al., 2017). However, although

current adversarial transferability methods claim to produce massive vulnerabilities in

machine vision models, Katzir and Elovici (2021) examines the practical implications

of adversarial transferability, which are frequently overstated. That study demonstrates

that it is nearly impossible to reliably predict whether a specific adversarial example

will transfer to an unseen target model in a black-box setting. This perspective

underscores the importance of systematically evaluating transferability in realistic

settings, including scenarios where attackers are sensitive to the cost of failed attempts.

In our study, we offer a novel systematic approach to explicitly assess the adversarial

transferability with varying levels of meta-information knowledge.

3.3 Methodology
3.3.1 Preliminaries

For consistency, we employ the following notation. We denote each Dataset D =
{X ,Y}. Where X = {x1, . . . , x|D|} is a set of images, with xi ∈ RH×W ×C , where

H,W and C are the height, width and the channels of the image accordingly and

Y = {y1 . . . yn} is used as the set of ground truth labels. We denote the training,

validation and testing splits per task as D = {Dtrain,Dval,Dtest}. A model is defined

as the following tupleM =M(D,W ,B,F), where D contains the dataset used for

training,W are the weights of the trained model and B is the pre-trained back-bone

B(WB) with available weightsWB. The notation F(T ,Z), where T encodes the mode
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of tuning (e.g., full fine-tuning, partial fine-tuning, etc.) and Z the depth of tuning of

the final classifier on top of the backbone.

3.3.2 Meta-Information variations
We define the variations of the available meta-information about the target model

M during an adversarial attack as a unit of releaseR = R(M(D,W ,B(WB),F(T ,Z))).
For example, if the target fine-tuning mode Z target and dataset Dtarget are not known,

the unit of release will be R = R(M(∗,W ,B(WB),F(T , ∗))). Note that the black-
box setting will correspond to the unit of release R(M(∗, ∗, ∗, ∗, ∗)) and the white-
box setting to R(M(D,W ,B(WB),F(T ,Z))), all the variations between these are

considered grey-box. When discussing any experiments within the gery-box setup, we

assume the minimal unit of release contains knowledge about at least the pre-trained

backbone i.e. R(M(∗, ∗,B(WB), ∗).

3.3.3 Adversarial Attacks with Proxy Models
To test the adversarial robustness of the models trained from the same pre-trained

backbone, we create a set of proxy modelsMproxy = {Mproxy
1 . . .Mproxy

v } given the

pre-trained backbone B, where v is the number of all possible units of release between

black-box and white-box settings that include the backbone. For each proxy model

Mproxy
i with its designated meta-information unit of release Ri, we use an adversarial

attack A to generate adversarial noise and further transfer it to the target model

Mtarget. This means that given an example image x with a label y, target and proxy

modelsMtarget, Mproxy we want to produce a sample x′ that would fool the target

model, such that arg maxMtarget(x′) ̸= y. If we are using a targeted attack then we

want Mtarget(x′) = t where t is the targeted class different from the ground truth

t ̸= cgt. After creating the adversarial attack for each sample in Dproxy
test and Dtarget

test we

evaluate the success rate of the attack and the success rate of the transferability onto

the target model. To measure the success and robustness of the adversarial attack and

its transferability, we define the following metrics:

• Attack Success Rate (ASR): This is the proportion of adversarial examples

successfully fooling the proxy modelMproxy
i , defined as:

ASRi = 1
|Dproxy

test |
∑

x∈Dproxy
test

I [arg maxMproxy
i (x′) ̸= y] , (3.1)

where I[·] is the indicator function.

3.3 Methodology 45



Algorithm 1 Backbone Attack
Input: Model backbone B, clean image x0, perturbation bound ϵ, step size α, number

of steps T , distance function Lcosine, random start flag
Output: Adversarial image xadv

Initialization:
xadv ← x0

if random start then
xadv ← xadv + Uniform(−ϵ, ϵ)

xadv ← Clip(xadv, 0, 1)
end

Fixed Original Image Representation:
z0 ← StopGrad(B(x0))

for t = 1 to T do
Forward Pass:

zadv ← B(xadv) // Adversarial image representation
Compute Loss and Gradient:

L ← 1− cos(zadv, z0) // Distance loss
g ← ∇xadvL // Gradient w.r.t xadv

Update Adversarial Image:
xadv ← xadv + α · sign(g) // PGD step

Projection:
δ ← Clip(xadv − x0,−ϵ, ϵ) // Project perturbation into ℓ∞-ball

xadv ← Clip(x0 + δ, 0, 1) // pixel range
end

return xadv

• Transfer Success Rate (TSR): To evaluate the transferability of adversarial

examples generated using the proxy modelMproxy
i to the target modelMtarget,

we compute the fooling rate on the target model as:

TSRi = 1
|Dtarget

test |
∑

x∈Dtarget
test

I
[
arg maxMtarget(x′) ̸= y

]
. (3.2)

This setup allows us to explicitly quantify how the availability of diverse meta-

information combinations explicitly impacts the adversarial transferability of the given

model, thus highlighting the risks in the model-sharing practices. A visual depiction of

this can be seen in fig. 3.1.

3.3.4 Backbone Attack
To test the vulnerabilities associated with publicly available pre-trained feature

extractors, we designed a naive backbone attack, which only utilises the known

backbone B of the modelMtarget. The aim, similar to the prior paragraph, is to create

an adversarial attack from the B to transfer towards the target modelMtarget. To do
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this, we utilise a Projected Gradient Descent (, PGD)-based method, where the attack

iteratively perturbs the input images in order to maximise the distance between the

feature representations of the clean input and the adversarial input, as derived from

the backbone B. More formally, let x and x̃ represent the clean input and adversarial

input, respectively. The attack iteratively refines x̃ such that:

x̃t+1 = ProjS (x̃t + α · sign (∇x̃tLB(x, x̃t))) , (3.3)

where LB is the loss function defined to measure the distance between the feature

representations of the clean and adversarial inputs. The backbone representations fB

are extracted as fB(x) = B(x), and the differentiable loss can be formulated as:

LB(x, x̃) = 1− cos (fB(x), fB(x̃)) , (3.4)

where cos(·, ·) represents the cosine similarity between the two feature vectors. To

prevent gradient computation from propagating to the clean representation fB(x),
we utilize a stop-gradient operation f̃B(x) = SG(fB(x)). The adversarial input x̃ is

initialized with a random perturbation within the ℓ∞ ball of radius ϵ, and the updates

are iteratively projected back onto this ball using the ProjS operator:

ProjS(x̃) = clip (x+ δ, 0, 1) , (3.5)

where δ = clip (x̃− x,−ϵ, ϵ) .

The pseudo-code of the complete process can bee seen in algorithm 1. In summary,

the backbone attack focuses solely on the backbone B, without requiring any knowl-

edge of the full target model Mtarget, thereby revealing vulnerabilities inherent to

publicly available feature extractors.

3.4 Experimental Setup
3.4.1 Image classification datasets

Through our study, we use 4 datasets covering both classical and domain-specific

classification benchmarks, such as CIFAR-10 and CIFAR-100 (Beyer et al., 2020) and

Oxford-IIIT Pets (Parkhi et al., 2012), Oxford Flowers-102 (Nilsback and Zisserman,

2008). We train the proxy and target model variation on each one of the datasets

using the recipe from (Kolesnikov et al., 2020), reproducing the state-of-the-art model

performance results (Dosovitskiy et al., 2020; Yu et al., 2022; Bruno et al., 2022; Foret

et al., 2020).
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Figure 3.2: The figure depicts the impact of the unavailability, i.e. difference from the
target model, with each possible meta-information combination on adversarial
transferability during proxy attack construction and the backbone attack. The
results show the average difference from the white-box in transferability using
PGD with a higher budget (left) and the segmentation w.r.t. in the target training
mode (right).

3.4.2 Model variations
We use 21 different models tuned from 5 architectures, 9 self-supervised objectives

and 3 pre-training datasets. A detailed overview of these can be seen in table 3.1.

3.4.3 Model Fintuning Variations
For training the proxy and target models, we employ two modes of training T , with

full-tuning of the weights and with fine-tuning only the last added classification layers

on top of the pre-trained backbone. We also define the depth of tuning Z as the

number of classification layers added on top of the pre-trained backbone. We use

{1, 3} final layers corresponding to shallow and deep tuning settings.

3.4.4 Adversarial Attacks
To assess the white-box adversarial attack success rate and the adversarial trans-

ferability from the proxy models, we employ FGSM (Goodfellow et al., 2015) and

PGD (Madry et al., 2018). We use standard attack hyper-parameters introduced in

parallel adversarial transferability studies (Waseda et al., 2023; Naseer et al., 2022).

For a fair comparison, we also use the same values for our backbone-attack. To show

that our results are consistent even with a higher computational budget, we report

the results of PGD with 4 times more iterations per sample for white-box, proxy and

backbone attack experiments. For black-box experiments, we use the Square attack

(Andriushchenko et al., 2020), which is a query-efficient method that uses a random

search through adversarial sample construction. To standardise the query budget for
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Figure 3.3: The figure breaks down impact of the unavailability, i.e. difference from the
target model, of each possible meta-information combination on the change in
the final decision-making of the model. Higher JS divergence implies a bigger
change in the final classification of the sample.

all architectures and simulate real-world constraints, we allow 10 queries of the target

model per sample.

3.5 Results
3.5.1 What meta-information matters

To quantify the impact of each possible meta-information availability along with

the backbone knowledge during adversarial attack construction, we compute the

difference between the adversarial attack success rate (ASR) for the target model

and the transferability success rate (TSR) from a proxy model, trained from the same

backbone, with partial information. We report the results obtained with the PGD

attack trained with higher iteration steps per sample as that is more representative

for measuring the adversarial attack success in white-box and grey-box settings. Our

results are consistent across the other attack types and variations.
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Figure 3.4: The figure depicts the impact of the unavailability, i.e. difference from the
target model, of each possible meta-information combination on adversarial
transferability during proxy attack construction and the backbone attack. The
results show the average transferability for PGD with a higher budget for targeted
vs untargeted attacks (left) and the segmentation w.r.t. the target training dataset
(right).

3.5.2 Which meta-information is important?
Our results in fig. 3.2 show that the most significant performance decay compared

to a white-box attack performance occurs when the attacker is unaware of the mode of

the training of the target model, i.e. if it is trained with complete parameters or only

tunes the last classification layers. The second most impactful knowledge for attack

construction is the availability of the target tuning dataset. The depth of the tuning is

the least important knowledge for obtaining a transferable attack. We further show in

the right part of fig. 3.2 that models that finetune the last classification layers can be

trivially exploited with transferable attacks, achieving results significantly better than

strong black-box exploitation and closing white-box attack performance. It is, however,

apparent that training all of the model weights substantially decreases the efficiency

of proxy attacks, with almost no correlation towards meta-information availability.

We further show that our results remain consistent w.r.t. the choice of the dataset,

and regardless if the adversarial attack is targeted or untargeted as seen in fig. 3.4.

It is interesting to note that for datasets with more domain-specific content, such

as Oxford-IIIT Pets and Oxford Flowers-102, the effectiveness of the proxy attack

dwindles, although these datasets are much less diverse compared to CIFAR-100.

3.5.3 Meta-information impacts the quality of adversarial
attacks

We also want to measure the effectiveness of the adversarial attack and the impact

of meta-information on it by quantifying how the generated adversarial sample has
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sifted the decision-making of the model. To do this, we compute the entropy of

the final softmax layer for each original sample and its adversarial counterpart and

complete ANOVA variance analysis (St et al., 1989) of entropy distribution. This

analysis, presented in table 3.2, tests whether the means of entropies from original and

adversarial images differ significantly across the groups of available meta-information.

A perfect attack would produce a sample that does not majorly impact the entropy from

the model. The analysis reveals that the target dataset, and tuning mode significantly

influence entropy, particularly in adversarial scenarios. This finding suggests that

while this meta-information aids in crafting effective adversarial samples, it also plays

a critical role in amplifying entropy shifts, thereby making these adversarial samples

more detectable.

To quantify the impact of the meta-information availability during attack construc-

tion on the decision-making of the model, we also compute the Jensen-Shannon

Divergence (Menéndez et al., 1997) between the output softmax distributions of the

model produced for original samples and their adversarial counterparts. High JS

divergence suggests a strong attack, as the adversarial example causes a significant

shift in the model’s predicted probabilities, with minimal changes to the input sample.

Our results show that not knowing the mode of the target model training causes the

most degradation in constructing successful adversarial samples with proxy attacks.

The second most important fact is the choice of the target dataset, while the depth of

the final classification layers does not seem to be impactful for creating adversarial

samples. This reaffirms our findings from fig. 3.2 and fig. 3.3, while also revealing

a critical insight: proxy attacks, even when constructed without knowledge of the

target model’s dataset or depth, can generate adversarial samples that induce more

pronounced distribution shifts than white-box attacks. In other words, attackers do

not require access to the training dataset or model classification depth to craft adver-

sarial samples capable of significantly disrupting the target model’s decision-making

process.

3.5.4 Backbone-attacks
To test the extent of the vulnerabilities that the knowledge of the pre-trained

backbone can cause, we evaluate our naive exploitation method, backbone attack,

that utilizes only the pre-trained feature extractor for adversarial sample construction.

Our results in fig. 3.2 and fig. 3.4 show that backbone attacks are highly effective

at producing transferable adversarial samples regardless of the target model tuning

mode, dataset or classification layer depth. This naive attack shows significantly

higher transferability compared to a strong black-box attack with a sizeable query and

iteration budget and almost all proxy attacks. The results are consistent across all meta-
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information variations, showing that even a naive attack can exploit the target model

vulnerabilities closely to a white-box setting, given the knowledge of the pre-trained

backbone. Moreover, from fig. 3.3, we see that the adversarial samples produced from

this attack, on average, cause a bigger shift in the model’s decision-making compared

to white-box attacks. This indicates that backbone attacks amplify the uncertainty

in the target model’s predictions, making them more disruptive than conventional

white-box attacks, highlighting the inherent risks of sharing pre-trained backbones for

public use. A concerning aspect of backbone attacks is their effectiveness in resource-

constrained environments. Unlike black-box attacks, which often require extensive

computation or iterative querying, backbone attacks can be executed with minimal

resources, leveraging pre-trained models freely available in public repositories. This

ease of implementation raises concerns, as it lowers the barrier for malicious actors to

exploit adversarial vulnerabilities.

3.5.5 Knowing weights vs Knowing everything but the
weights

To isolate the impact of pre-trained backbone knowledge in adversarial transfer-

ability, we train two sets of models from the same ResNet-50 SwAV backbone with

identical meta-information variations but different batch sizes. This allows the pro-

duction of two sets of models with matching training meta-information but varying

weights; one set is chosen as the target, and the other as the proxy model. We aim to

compare the adversarial transferability of the attacks from the set of proxies towards

their matching targets with the backbone attacks. This allows us to simulate conditions

where adversaries either know all meta-information but lack the weights or have ac-

cess to the backbone weights alone. Our results in fig. 3.5 show that the knowledge of

the pre-trained backbone is, on average, a stronger or at least an equivalent signal for

producing adversarially transferable attacks compared to possessing all of the training

meta-information without the knowledge of the weights. The results are consistent

across all of the datasets, with domain-specific datasets showing marginal differences

in adversarial transferability between the two scenarios. This means that possessing

information about only the target model backbone is equivalent to knowing all of the

training meta-information for constructing transferable adversarial samples.

3.6 Conclusions
In this paper, we investigated the vulnerabilities of machine vision models fine-

tuned from publicly available pre-trained backbones under a novel grey-box adversarial

setting. Through an extensive evaluation framework, including over 20,000 adversarial
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Figure 3.5: The figure shows scenarios where adversaries either know all meta-information
but lack the weights or have access to the backbone weights (SwaV ResNet-50)
alone. Knowledge of only the backbone is highlighted as BackbonePGD.

transferability comparisons, we measured the effect of varying levels of training meta-

information availability for constructing transferable adversarial attacks. We also

introduced a naive backbone attack method, showing that access to backbone weights

is sufficient for obtaining adversarial attacks significantly better than query-based

black-box settings and approaching white-box performance. We found that attacks

crafted using only the backbone weights often induce more substantial shifts in the

model’s decision-making than traditional white-box attacks. We demonstrated that

access to backbone weights is equivalent in effectiveness to possessing all meta-

information about the target model, making public backbones a critical security

concern. Our results highlight significant security risks associated with sharing pre-

trained backbones, as they enable attackers to craft highly effective adversarial samples,

even with minimal additional information. These findings underscore the need for

stricter practices in sharing and deploying pre-trained backbones to mitigate the

inherent vulnerabilities exposed by adversarial transferability.
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SSL Method Pretraining Dataset Architecture

Colorization (Zhang et al., 2016)
Colorization YFCC100M AlexNet
Colorization ImageNet-1K AlexNet
Colorization ImageNet-1K ResNet-50
Colorization ImageNet-21K AlexNet
Colorization ImageNet-21K ResNet-50

Jigsaw Puzzle(Noroozi and Favaro, 2016)
Jigsaw Puzzle ImageNet-21K ResNet-50
Jigsaw Puzzle ImageNet-1K ResNet-50
Jigsaw Puzzle ImageNet-21K ResNet-50
Jigsaw Puzzle ImageNet-21K AlexNet
Jigsaw Puzzle ImageNet-1K AlexNet
Jigsaw Puzzle ImageNet-1K ResNet-50

PIRL (Jigsaw-based)(Misra and van der Maaten, 2020)
PIRL ImageNet-1K ResNet-50

Rotation Prediction (Gidaris et al., 2018)
RotNet ImageNet-1K ResNet-50

DINO(Caron et al., 2021)
DINO ImageNet-1K DeiT-Small
DINO ImageNet-1K XCiT-Small

SimCLR(Chen et al., 2020a)
SimCLR ImageNet-1K ResNet-50
SimCLR ImageNet-1K ResNet-101

SwAV (Caron et al., 2020)
SwAV ImageNet-1K ResNet-50
SwAV ImageNet-1K ResNet-50

DeepCluster V2 (Caron et al., 2018)
DeepCluster V2 ImageNet-1K AlexNet

Instance Discrimination (NPID) (Wu et al., 2018)
NPID ImageNet-1K ResNet-50

Table 3.1: Summary of Self-Supervised Learning Methods, Pretraining Datasets, and Architec-
tures used in our study.
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Original Entropy Adversarial Entropy

Metadata type F-Statistic P-Value F-Statistic P-Value
Target Tune Mode 0.00 0.96 1238.7 0.0
Proxy Tune Mode 0.02 0.88 0.5 0.4
Target Dataset 2812.25 0.00 1184.1 0.0
Proxy Dataset 8.31 0.00 5.0 0.0
Target Tune Depth 5.64 0.01 0.36 0
Proxy Tune Depth 0.08 0.77 0.00 0

Table 3.2: Variance analysis of entropy values across categorical variables. The table shows F-
statistics and p-values for both original and adversarial entropy means. Significant
p-values (p <0.05) show notable variations in entropy across meta-information.
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Part III
Reasoning Inconsistencies from Data



4Topic-Guided Sampling For
Data-Efficient Multi-Domain
Stance Detection

4.1 Introduction
The goal of stance detection is to identify the viewpoint expressed by an author

within a piece of text towards a designated topic (Mohammad et al., 2016). Such

analyses can be used in a variety of domains ranging from identifying claims within

political or ideological debates (Somasundaran and Wiebe, 2010; Thomas et al., 2006),

identifying mis- and disinformation (Hanselowski et al., 2018; Hardalov et al., 2022a),

public health policymaking (Glandt et al., 2021; Hossain et al., 2020; Osnabrügge

et al., 2023), news recommendation (Reuver et al., 2021) to investigating attitudes

voiced on social media (Qazvinian et al., 2011; Augenstein et al., 2016; Conforti

et al., 2020). However, in most domains, and even more so for cross-domain stance

detection, the exact formalisation of the task gets blurry, with varying label sets and

their corresponding definitions, data collection protocols and available annotations.

Furthermore, this is accompanied by significant changes in the topic-specific vocabulary

(Somasundaran and Wiebe, 2010; Wei and Mao, 2019), text style (Pomerleau and Rao,

2017; Ferreira and Vlachos, 2016) and topics mentioned either explicitly (Qazvinian

et al., 2011; Walker et al., 2012) or implicitly (Hasan and Ng, 2013; Derczynski et al.,

2017). Recently, a benchmark of 16 datasets (Hardalov et al., 2021a) covering a

variety of domains and topics has been proposed for testing stance detection models

across multiple domains. It must be noted that these datasets are highly imbalanced,

with an imbalanced label distribution between the covered topics, i.e. inter-topic and

within each topic, i.e. per-topic, as can be seen in Figure 4.2 and Figure 4.3. This

further complicates the creation of a robust stance detection classifier.

Given the inherent skew present within the dataset and variances within each

domain, we propose a topic-guided diversity sampling method, which produces a

data-efficient representative subset while mitigating label imbalances. These samples

are used for fine-tuning a Pre-trained Language Model (PLM), using a contrastive

learning objective to create a robust stance detection model. These two components

form our Topic Efficient StancE Detection (TESTED) framework, as seen in Figure 4.1,

and are analysed separately to pinpoint the factors impacting model performance and

robustness. We test our method on the multi-domain stance detection benchmark by
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Figure 4.1: The two components of TESTED: Topic Guided Sampling (top) and training with
contrastive objective (bottom).

Hardalov et al. (2021a), achieving state-of-the-art results with both in-domain, i.e.

all topics seen and out-of-domain, i.e. unseen topics evaluations. Note though that

TESTED could be applied to any text classification setting.

In summary, our contributions are:

• We propose a novel framework (TESTED) for predicting stances across various

domains, with data-efficient sampling and contrastive learning objective;

• Our proposed method achieves SOTA results both in-domain and out-of-domain;

• Our analysis shows that our topic-guided sampling method mitigates dataset

imbalances while accounting for better performance than other sampling tech-

niques;

• The analysis shows that the contrastive learning objective boosts the ability of

the classifier to differentiate varying topics and stances.

4.2 Related Work
4.2.1 Stance Detection

is an NLP task which aims to identify an author’s attitude towards a particular topic

or claim. The task has been widely explored in the context of mis- and disinformation
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detection (Ferreira and Vlachos, 2016; Hanselowski et al., 2018; Zubiaga et al., 2018b;

Hardalov et al., 2022a), sentiment analysis (Mohammad et al., 2017; Aldayel and

Magdy, 2019) and argument mining (Boltužić and Šnajder, 2014; Sobhani et al.,

2015; Wang et al., 2019c). Most papers formally define stance detection as a pairwise

sequence classification where stance targets are provided (Küçük and Can, 2020).

However, with the emergence of different data sources, ranging from debating plat-

forms (Somasundaran and Wiebe, 2010; Hasan and Ng, 2014; Aharoni et al., 2014) to

social media (Mohammad et al., 2016; Derczynski et al., 2017), and new applications

(Zubiaga et al., 2018a; Hardalov et al., 2022a), this formal definition has been subject

to variations w.r.t. the label dictionary inferred for the task.

Previous research has predominantly focused on a specific dataset or domain of

interest, outside of a few exceptions like multi-target (Sobhani et al., 2017; Wei

et al., 2018) and cross-lingual (Hardalov et al., 2022b) stance detection. In contrast,

our work focuses on multi-domain stance detection, while evaluating in- and out-of-

domain on a 16 dataset benchmark with state-of-the-art baselines (Hardalov et al.,

2021a).

4.2.2 Topic Sampling
Our line of research is closely associated with diversity (Ren et al., 2021) and

importance (Beygelzimer et al., 2009) sampling and their applications in natural

language processing (Zhu et al., 2008; Zhou and Lampouras, 2021). Clustering-based

sampling approaches have been used for automatic speech recognition (Syed et al.,

2016), image classification (Ranganathan et al., 2017; Yan et al., 2022) and semi-

supervised active learning (Buchert et al., 2022) with limited use for textual data

(Yang et al., 2014b) through topic modelling (Blei et al., 2001). This research proposes

an importance-weighted topic-guided diversity sampling method that utilises deep

topic models, for mitigating inherent imbalances present in the data, while preserving

relevant examples.

4.2.3 Contrastive Learning
has been used for tasks where the expected feature representations should be able

to differentiate between similar and divergent inputs (Liu et al., 2021; Rethmeier and

Augenstein, 2023). Such methods have been used for image classification (Khosla

et al., 2020), captioning (Dai and Lin, 2017) and textual representations (Giorgi et al.,

2021; Jaiswal et al., 2020; Ostendorff et al., 2022). The diversity of topics (Qazvinian

et al., 2011; Walker et al., 2012; Hasan and Ng, 2013), vocabulary (Somasundaran

and Wiebe, 2010; Wei and Mao, 2019) and expression styles (Pomerleau and Rao,

2017) common for stance detection can be tackled with contrastive objectives, as seen
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for similar sentence embedding and classification tasks (Gao et al., 2021; Yan et al.,

2021).

4.3 Datasets
Our study uses an existing multi-domain dataset benchmark (Hardalov et al., 2021a),

consisting of 16 individual datasets split into four source groups: Debates, News, Social
Media, Various. The categories include datasets about debating and political claims

including arc (Hanselowski et al., 2018; Habernal et al., 2018), iac1 (Walker et al.,

2012), perspectum (Chen et al., 2019), poldeb (Somasundaran and Wiebe, 2010),

scd (Hasan and Ng, 2013), news like emergent (Ferreira and Vlachos, 2016), fnc1

(Pomerleau and Rao, 2017), snopes (Hanselowski et al., 2019), social media like mtsd

(Sobhani et al., 2017), rumour (Qazvinian et al., 2011), semeval2016t6 (Mohammad

et al., 2016), semeval2019t7 (Derczynski et al., 2017), wtwt (Conforti et al., 2020)

and datasets that cover a variety of diverse topics like argmin (Stab et al., 2018), ibmcs

(Bar-Haim et al., 2017) and vast (Allaway and McKeown, 2020). Overall statistics for

all of the datasets can be seen in section 4.11.

4.3.1 Data Standardisation
As the above-mentioned stance datasets from different domains possess different

label inventories, the stance detection benchmark by Hardalov et al. (2021a) introduce

a mapping strategy to make the class inventory homogeneous. We adopt that same

mapping for a fair comparison with prior work, shown in Appendix 4.11.

4.4 Methods
Our goal is to create a stance detection method that performs strongly on the

topics known during training and can generalize to unseen topics. The benchmark

by Hardalov et al. (2021a) consisting of 16 datasets is highly imbalanced w.r.t the

inter-topic frequency and per-topic label distribution, as seen in Figure 4.2.

These limitations necessitate a novel experimental pipeline. The first component of

the pipeline we propose is an importance-weighted topic-guided diversity sampling

method that allows the creation of supervised training sets while mitigating the

inherent imbalances in the data. We then create a stance detection model by fine-

tuning a Pre-trained Language Model (PLM) using a contrastive objective.

4.4.1 Topic-Efficient Sampling
We follow the setting in prior work on data-efficient sampling (Buchert et al.,

2022; Yan et al., 2022), framing the task as a selection process between multi-domain
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examples w.r.t the theme discussed within the text and its stance. This means that given

a set of datasets D = (D1, . . .Dn) with their designated documents Di = (d1
i , . . . d

m
i ),

we wish to select a set of diverse representative examples Dtrain, that are balanced

w.r.t the provided topics T = (t1, . . . tq) and stance labels L = (l1, . . . lk).

4.4.2 Diversity Sampling via Topic Modeling
We thus opt for using topic modelling to produce a supervised subset from all

multi-domain datasets. Selecting annotated examples during task-specific fine-tuning

is a challenging task (Shao et al., 2019), explored extensively within active learning

research (Hino, 2020; Konyushkova et al., 2017). Random sampling can lead to

poor generalization and knowledge transfer within the novel problem domain (Das

et al., 2021; Perez et al., 2021). To mitigate the inconsistency caused by choosing

suboptimal examples, we propose using deep unsupervised topic models, which allow

us to sample relevant examples for each topic of interest. We further enhance the

model with an importance-weighted diverse example selection process (Shao et al.,

2019; Yang et al., 2015a) within the relevant examples generated by the topic model.

The diversity maximisation sampling is modeled similarly to Yang et al. (2015a).

The topic model we train is based on the technique proposed by Angelov (2020)

that tries to find topic vectors while jointly learning document and word semantic

embeddings. The topic model is initialized with weights from the all-MiniLM-L6 PLM,

which has a strong performance on sentence embedding benchmarks (Wang et al.,

2020). It is shown that learning unsupervised topics in this fashion maximizes the

total information gained, about all texts D when described by all wordsW.

I(D,W) =
∑
d∈D

∑
w∈W

P (d, w) log
(

P (d, w)
P (d)P (w)

)

This characteristic is handy for finding relevant samples across varying topics,

allowing us to search within the learned documents di. We train a deep topic model

Mtopic using multi-domain data D and obtain topic clusters C = (Ci, . . . Ct), where

|C| = t is the number of topic clusters. We obtain the vector representation for ∀di

from the tuned PLM embeddings E = (e1, . . . em) inMtopic, while iteratively traversing

through the clusters Ci ∈ C.
Our sampling process selects increasingly more diverse samples after each iteration.

This search within the relevant examples is presented in algorithm 2. This algorithm

selects a set of diverse samples from the given multi-domain datasets D, using the

clusters from a deep topic model Mtopic and the sentence embeddings E of the

sentences as a basis for comparison. The algorithm starts by selecting a random

sentence as the first diverse sample and uses this sentence to calculate a “centroid”
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Algorithm 2 Topic Efficient Sampling
Input: S ≥ 0 // Sampling Threshold

Input: Avg ∈ {moving, exp}
Output: |C| > 0
Dtrain ← {}

I ← { |C1|∑
Ci∈C Ci

, . . . , |Ct|∑
Ci∈C Ci

} // Cluster Importances

for Ci ∈ C do
Ei ← {PLM(d1

i ), . . . } = {e1
i , . . . , em

i }
si ← max(1, S · Ii) // Threshold per cluster

j ← 0
cent0 ←

∑
ei∈E ei

|E| // Centroid of the cluster
while j ≤ si do

sim← ⟨E,cent⟩
∥E∥∥cent∥ // Similarity Ranking

sample← arg sort(sim,Ascending)[0] // Take the sample most diverse
from the centroid

Dtrain ← Dtrain ∪ sample
j ← j + 1

centj ←

α · esample + (1− α) · centj−1 if exp
(j−1)

j
· centj−1 + esample

j
if moving

// Centroid update

w.r.t. sampled data
end

end
return Dtrain

embedding. It then iteratively selects the next most dissimilar sentence to the current

centroid, until the desired number of diverse samples is obtained.

4.4.3 Topic-Guided Stance Detection
4.4.4 Task Formalization

Given the topic, ti for each document di in the generated set Dtrain we aim to classify

the stance expressed within that text towards the topic. For a fair comparison with prior

work, we use the label mapping from the previous multi-domain benchmark (Hardalov

et al., 2021a) and standardise the original labels L into a five-way stance classification

setting, S = {Positive, Negative, Discuss, Other, Neutral}. Stance detection can be

generalized as pairwise sequence classification, where a model learns a mapping

f : (di, ti)→ S. We combine the textual sequences with the stance labels to learn this

mapping. The combination is implemented using a simple prompt commonly used for

NLI tasks (Lan et al., 2020; Raffel et al., 2020; Hambardzumyan et al., 2021), where

the textual sequence becomes the premise and the topic the hypothesis.
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[CLS] premise: premise

hypothesis: topic [EOS]

The result of this process is a supervised dataset for stance prediction Dtrain =
((Prompt(d1, t1), s1) . . . (Prompt(dn, tn), sn)) where ∀si ∈ S. This method allows for

data-efficient sampling, as we at most sample 10% of the data while preserving the

diversity and relevance of the selected samples. The versatility of the method allows

TESTED to be applied to any text classification setting.

4.4.5 Tuning with a Contrastive Objective
After obtaining the multi-domain supervised training set Dtrain, we decided to

leverage the robustness of PLMs, based on a transformer architecture (Vaswani et al.,

2017b) and fine-tune on Dtrain with a single classification head. This effectively allows

us to transfer the knowledge embedded within the PLM onto our problem domain.

For standard fine-tuning of the stance detection modelMstance we use cross-entropy

as our initial loss:

LCE = −
∑
i∈S

yi log (Mstance(di)) (4.1)

Here yi is the ground truth label. However, as we operate in a multi-domain setting,

with variations in writing vocabulary, style and covered topics, it is necessary to

train a model where similar sentences have a homogeneous representation within

the embedding space while keeping contrastive pairs distant. We propose a new

contrastive objective based on the cosine distance between the samples to accomplish

this. In each training batch B = (d1, . . . db), we create a matrix of contrastive pairs

P ∈ Rb×b, where ∀i, j = 1, b, Pij = 1 if i-th and j-th examples share the same label

and −1 otherwise. The matrices can be precomputed during dataset creation, thus

not adding to the computational complexity of the training process. We formulate our

pairwise contrastive objective LCL(xi, xj,Pij) using matrix P.

LCL =

e(1− e
cos(xi,xj)−1),Pij = 1

emax(0,cos(xi,xj)−β) − 1,Pij = −1
(4.2)

Here xi, xj are the vector representations of examples di, dj. The loss is similar to

cosine embedding loss and soft triplet loss (Barz and Denzler, 2020; Qian et al., 2019);
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Majority class baseline 27.60 21.45 21.27 34.66 39.38 35.30 21.30 20.96 43.98 19.49 25.15 24.27 22.34 15.91 33.83 34.06 17.19
Random baseline 35.19 18.50 30.66 50.06 48.67 50.08 31.83 18.64 45.49 33.15 20.43 31.11 17.02 20.01 49.94 50.08 33.25
MoLE 65.55 63.17 38.50 85.27 50.76 65.91 83.74 75.82 75.07 65.08 67.24 70.05 57.78 68.37 63.73 79.38 38.92

TESTED (Our Model) 69.12 64.82 56.97 83.11 52.76 64.71 82.10 83.17 78.61 63.96 66.58 69.91 58.72 70.98 62.79 88.06 57.47
Topic→ Random Sampling 61.14 53.92 42.59 77.68 44.08 52.54 67.55 75.60 72.67 56.35 59.08 66.88 57.28 69.32 52.02 76.93 53.80
Topic→ Stratified Sampling 64.01 50.27 51.57 77.78 46.67 62.13 79.00 77.90 76.44 61.50 64.92 68.45 51.96 69.47 56.76 78.30 51.16
- Contrastive Objective 65.63 61.11 55.50 81.85 43.81 63.04 80.84 79.05 73.43 62.18 61.57 60.17 56.06 68.79 59.51 86.94 56.35
Topic Sampling→ Stratified
- Contrastive Loss 63.24 60.98 49.17 77.85 45.54 58.23 77.36 75.80 74.77 60.85 63.69 62.59 54.74 62.85 53.67 86.04 47.72

Table 4.1: In-domain results reported with macro averaged F1, averaged over experiments.
In lines under TESTED, we replace (for Sampling) (→) or remove (for loss) (−),
the comprising components.
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MoLE w/ Hard Mapping 32.78 25.29 35.15 29.55 22.80 16.13 58.49 47.05 29.28 23.34 32.93 37.01 21.85 16.10 34.16 72.93 22.89
MoLE w/ Weak Mapping 49.20 51.81 38.97 58.48 47.23 53.96 82.07 51.57 56.97 40.13 51.29 36.31 31.75 22.75 50.71 75.69 37.15
MoLE w/Soft Mapping 46.56 48.31 32.21 62.73 54.19 51.97 46.86 57.31 53.58 37.88 44.46 36.77 28.92 28.97 57.78 72.11 30.96

TESTED 59.41 50.80 57.95 78.95 55.62 55.23 80.80 72.51 61.70 55.49 39.44 40.54 46.28 42.77 72.07 86.19 54.33

Topic Sampling→ Stratified 50.38 38.47 46.54 69.75 50.54 51.37 68.25 59.41 51.64 48.24 28.04 29.69 34.97 38.13 63.83 83.20 44.06
- Contrastive Loss 54.63 47.96 50.09 76.51 47.49 51.93 75.22 68.69 56.53 49.47 33.95 37.96 44.10 39.56 63.09 83.59 48.03

Table 4.2: Out-of-domain results with macro averaged F1. In lines under TESTED, we replace
(for Sampling) (→) or remove (for loss) (−), the comprising components. Results
for MoLE w/Soft Mapping are aggregated across with best per-embedding results
present in the study (Hardalov et al., 2021a).

however, it penalizes the opposing pairs harsher because of the exponential nature,

but does not suffer from computational instability as the values are bounded in the

range [0, e− 1
e
]. The final loss is:

L = LCE + LCL (4.3)

We use the fine-tuning method from Mosbach et al. (2021); Liu et al. (2019c) to

avoid the instability caused by catastrophic forgetting, small-sized fine-tuning datasets

or optimization difficulties.

4.5 Experimental Setup
4.5.1 Evaluation

We evaluate our method on the 16 dataset multi-domain benchmark and the base-

lines proposed by Hardalov et al. (2021a). To directly compare with prior work, we

use the same set of evaluation metrics: macro averaged F1, precision, recall and

accuracy.
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4.5.2 Model Details
We explore several PLM transformer architectures within our training and classifi-

cation pipelines in order to evaluate the stability of the proposed technique. We opt

to finetune a pre-trained roberta-large architecture (Liu et al., 2019c; Conneau et al.,

2020). For fine-tuning, we use the method introduced by Mosbach et al. (2021), by

adding a linear warmup on the initial 10% of the iteration raising the learning rate to

2e−5 and decreasing it to 0 afterwards. We use a weight decay of λ = 0.01 and train for

3 epochs with global gradient clipping on the stance detection task. We further show

that learning for longer epochs does not yield sizeable improvement over the initial

fine-tuning. The optimizer used for experimentation is an AdamW (Loshchilov and

Hutter, 2019) with a bias correction component added to stabilise the experimentation

(Mosbach et al., 2021).

4.5.3 Topic Efficiency
Recall that we introduce a topic-guided diversity sampling method within TESTED,

which allows us to pick relevant samples per topic and class for further fine-tuning.

We evaluate its effectiveness by fine-tuning PLMs on the examples it generates and

comparing it with training on a random stratified sample of the same size.

4.6 Results and Analysis
In this section, we discuss and analyze our results, while comparing the perfor-

mance of the method against the current state-of-the-art (Hardalov et al., 2021a) and

providing an analysis of the topic efficient sampling and the contrastive objective.

4.6.1 Stance Detection
4.6.2 In-domain

We train on our topic-efficient subset Dtrain and test the method on all datasets D in

the multi-domain benchmark. Our method TESTED is compared to MoLE (Hardalov

et al., 2021a), a strong baseline and the current state-of-the-art on the benchmark.

The results, presented in Table 4.1, show that TESTED has the highest average

performance on in-domain experiments with an increase of 3.5 F1 points over MoLE,

all while using ≤ 10% of the amount of training data in our subset Dtrain sampled

from the whole dataset D. Our method is able to outperform all the baselines on 10
out of 16 datasets. On the remaining 6 datasets the maximum absolute difference

between TESTED and MoLE is 1.1 points in F1. We also present ablations for TESTED,

by replacing the proposed sampling method with other alternatives, removing the

contrastive objective or both simultaneously. Replacing Topic Efficient sampling with
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either Random or Stratified selections deteriorates the results for all datasets with an

average decrease of 8 and 5 F1 points, respectively. We attribute this to the inability

of other sampling techniques to maintain inter-topic distribution and per-topic label

distributions balanced while selecting diverse samples. We further analyse how our

sampling technique tackles these tasks in section 4.6.4. We also see that removing

the contrastive loss also results in a deteriorated performance across all the datasets

with an average decrease of 3 F1 points. In particular, we see a more significant

decrease in datasets with similar topics and textual expressions, i.e. poldeb and

semeval16, meaning that learning to differentiate between contrastive pairs is essential

within this task. We analyse the effect of the contrastive training objective further in

section 4.6.9.

4.6.3 Out-of-domain
In the out-of-domain evaluation, we leave one dataset out of the training process

for subsequent testing. We present the results of TESTED in Table 4.2, showing that it

is able to overperform over the previous state-of-the-art significantly. The metrics in

each column of Table 4.2 show the results for each dataset held out from training and

only evaluated on. Our method records an increased performance on 13 of 16 datasets,

with an averaged increase of 10.2 F1 points over MoLE, which is a significantly more

pronounced increase than for the in-domain setting, demonstrating that the strength

of TESTED lies in better out-of-domain generalisation. We can also confirm that

replacing the sampling technique or removing the contrastive loss results in lower

performance across all datasets, with decreases of 9 and 5 F1 points respectively. This

effect is even more pronounced compared to the in-domain experiments, as adapting

to unseen domains and topics is facilitated by diverse samples with a balanced label

distribution.

4.6.4 Imbalance Mitigation Through Sampling
4.6.5 Inter-Topic

To investigate the inter-topic imbalances, we look at the topic distribution for

the top 20 most frequent topics covered in the complete multi-domain dataset D,

which accounts for ≥ 40% of the overall data. As we can see in Figure 4.2, even the

most frequent topics greatly vary in their representation frequency, with σ = 4093.55,

where σ is the standard deviation between represented amounts. For the training

dataset Dtrain, by contrast, the standard deviation between the topics is much smaller

σ = 63.59. This can be attributed to the fact that Dtrain constitutes ≤ 10% of D, thus

we also show the aggregated data distributions in Figure 4.2. For a more systematic
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Figure 4.2: Distributions of top 20 most frequent topics in complete dataset D (left), Sampled
dataset Dtrain (mid) and their aggregated comparison (right). The distribution of
top 20 topics in {D} − {Dtrain} is added to the tail of the figure (mid).

dataset stat p-value

fnc-1-ours 1.00 0.007937
arc 0.40 0.873016
emergent 0.80 0.079365
wtwt 0.20 1.000000
rumor 0.40 0.873016
snopes 0.40 0.873016
perspectrum 0.60 0.357143
vast 0.60 0.357143
semeval2016task6 0.40 0.873016
iac 0.40 0.873016
mtsd 0.25 1.000000
argmin 0.40 0.873016
scd 1.00 0.007937
ibm_claim_stance 0.80 0.079365
politicaldebates 0.50 1.000000

Table 4.3: KS test for topic distributions. The topics in bold designate a rejected null-
hypothesis (criteria: p ≤ 0.05 or stat ≥ 0.4), that the topics in D and Dtrain

come from the same distribution.

analysis, we employ the two sample Kolmogorov-Smirnov (KS) test (Massey, 1951),

to compare topic distributions in D and Dtrain for each dataset present in D. The

test compares the cumulative distributions (CDF) of the two groups, in terms of their

maximum-absolute difference, stat = supx |F1(x)− F2(x)|.
The results in Table 4.3 show that the topic distribution within the full and sampled

data D, Dtrain, cannot be the same for most of the datasets. The results for the

maximum-absolute difference also show that with at least 0.4 difference in CDF, the

sampled dataset Dtrain on average has a more balanced topic distribution. The analysis

in Figure 4.2 and Table 4.3, show that the sampling technique is able to mitigate

the inter-topic imbalances present in D. A more in-depth analysis for each dataset is

provided in section 4.9.
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Figure 4.3: Label distribution in D (right) and Dtrain (left).

4.6.6 Per-topic
For the per-topic imbalance analysis, we complete similar steps to the inter-topic

analysis, with the difference that we iterate over the top 20 frequent topics looking

at label imbalances within each topic. We examine the label distribution for the top

20 topics for a per-topic comparison. The standard deviation in label distributions

averaged across those 20 topics is σ = 591.05 for the whole dataset D and the sampled

set Dtrain σ = 11.7. This can be attributed to the stratified manner of our sampling

technique. This is also evident from Figure 4.3, which portrays the overall label

distribution in D and Dtrain.

To investigate the difference in label distribution for each of the top 20 topics in

D, we use the KS test, presented in Table 4.4. For most topics, we see that the label

samples in D and Dtrain cannot come from the same distribution. This means that the

per-topic label distribution in the sampled dataset Dtrain, does not possess the same

imbalances present in D.

We can also see the normalized standard deviation for the label distribution within

Dtrain is lower than in D, as shown in Figure 4.4. This reinforces the finding that

per-topic label distributions in the sampled dataset are more uniform. For complete

per-topic results, we refer the reader to section 4.9.

4.6.7 Performance
Using our topic-efficient sampling method is highly beneficial for in- and out-of-

domain experiments, presented in Table 4.1 and Table 4.2. Our sampling method

can select diverse and representative examples while outperforming Random and
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topic p-values

FOXA_DIS 0.028571
CVS_AET 0.028571
ANTM_CI 0.028571
AET_HUM 0.047143
abortion 0.100000
Sarah Palin getting divorced? 0.028571
gun control 0.001879
CI_ESRX 0.028571
Hilary Clinton 0.001468
death penalty 0.100000
Donald Trump 0.002494
Is Barack Obama muslim? 0.028571
cloning 0.333333
marijuana legalization 0.032178
nuclear energy 0.333333
school uniforms 0.333333
creation 0.003333
minimum wage 0.333333
evolution 0.100000
lockdowns 0.000491

Table 4.4: KS test for label distributions. The topics in bold designate a rejected null-
hypothesis (criteria: p ≤ 0.05), that the label samples in D and Dtrain averaged
per top 20 topics come from the same distribution.

Stratified sampling techniques by 8 and 5 F1 points on average. This performance can

be attributed to the mitigated inter- and per-topic imbalance in Dtrain.

4.6.8 Data Efficiency
TESTED allows for sampling topic-efficient, diverse and representative samples

while preserving the balance of topics and labels. This enables the training of data-

efficient models for stance detection while avoiding redundant or noisy samples. We

analyse the data efficiency of our method by training on datasets with sizes [1%, 15%]
compared to the overall data size |D|, sampled using our technique. Results for the

in-domain setting in terms of averaged F1 scores for each sampled dataset size are

shown in Figure 4.5. One can observe a steady performance increase with the more

selected samples, but diminishing returns from the 10% point onwards. This leads

us to use 10% as the optimal threshold for our sampling process, reinforcing the

data-efficient nature of TESTED.

4.6.9 Contrastive Objective Analysis
To analyse the effect of the contrastive loss, we sample 200 unseen instances strati-

fied across each dataset and compare the sentence representations before and after

training. To compare the representations, we reduce the dimension of the embeddings

with t-SNE and cluster them with standard K-means. We see in Figure 4.6 that using

the objective allows for segmenting contrastive examples in a more pronounced way.

The cluster purity also massively rises from 0.312 to 0.776 after training with the
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Figure 4.4: Normalized Standard Deviation in label distribution for top 20 topics.

contrastive loss. This allows the stance detection model to differentiate and reason

over the contrastive samples with greater confidence.

4.7 Conclusions
We proposed TESTED, a novel end-to-end framework for multi-domain stance

detection. The method consists of a data-efficient topic-guided sampling module,

that mitigates the imbalances inherent in the data while selecting diverse examples,

and a stance detection model with a contrastive training objective. TESTED yields

significant performance gains compared to strong baselines on in-domain experiments,

but in particular generalises well on out-of-domain topics, achieving a 10.2 F1 point

improvement over the state of the art, all while using ≤ 10% of the training data.

While in this paper, we have evaluated TESTED on stance detection, the method is

applicable to text classification more broadly, which we plan to investigate in more

depth in future work.

Limitations
Our framework currently only supports English, thus not allowing us to complete a

cross-lingual study. Future work should focus on extending this study to a multilingual

setup. Our method is evaluated on a 16 dataset stance benchmark, where some

domains bear similarities. The benchmark should be extended and analyzed further

to find independent datasets with varying domains and minimal similarities, allowing

for a more granular out-of-domain evaluation.
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4.8 Appendix
4.9 Imbalance analysis
4.9.1 Inter-topic

To complement our inter-topic imbalance mitigation study, we complete an ablation

on all topics in D and report them on a per-domain basis in Figure 4.7. The trend is

similar to the one in Figure 4.2, where the dataset with imbalanced distributions is

rebalanced, and balanced datasets are not corrupted.

4.9.2 Per-topic
We show that our topic-efficient sampling method allows us to balance the label

distribution for unbalanced topics, while not corrupting the ones distributed almost

uniformly. To do this, we investigate each of the per-topic label distributions for the

top 20 most frequent topics while comparing the label distributions for D and Dtrain,

presented in Figure 4.8.
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Figure 4.6: Sample Representation before (left) and after (right) contrastive training.

fnc-1-ours arc emergent

wtwt rumor snopes

perspectrum vast semeval2016task6

iac mtsd argmin

scd ibm_claim_stance politicaldebates

Figure 4.7: Distributions of top 20 most frequent topics for each dataset (left), Sampled
dataset Dtrain=dataset (mid) and their aggregated comparison (right).
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Figure 4.8: Distributions of labels for top 20 most frequent topics for D (left), Sampled dataset
Dtrain=dataset (mid) and their aggregated comparison (right).

4.10 Evaluation Metrics
To evaluate our models and have a fair comparison with the introduced benchmarks

we use a standard set of metrics for classification tasks such as macro-averaged F1,

precision, recall and accuracy.

Acc = TP + TN

TP + TN + FP + FN
(4.4)

Prec = TP

TP + FP
(4.5)

Recall = TP

TP + FN
(4.6)

F1 = 2 ∗ Prec ∗Recall
Prec+Recall

= 2 ∗ TP
2 ∗ TP + FP + FN

(4.7)

4.11 Dataset Statistics
We use a stance detection benchmark (Hardalov et al., 2021a) whose data statistics

are shown in Table 4.5. The label mapping employed is shown in Table 4.6.

4.12 TESTED with different backbones
We chose to employ different PLM’s as the backbone for TESTED and report the

results in the Table 4.7. The PLMs are taken from the set of roberta-base, roberta-large,
xlm-roberta-base, xlm-roberta-large. The differences between models with a similar
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Dataset Train Dev Test Total

arc 12,382 1,851 3,559 17,792
argmin 6,845 1,568 2,726 11,139
emergent 1,770 301 524 2,595
fnc1 42,476 7,496 25,413 75,385
iac1 4,227 454 924 5,605
ibmcs 935 104 1,355 2,394
mtsd 3,718 520 1,092 5, 330
perspectrum 6,978 2,071 2,773 11,822
poldeb 4,753 1,151 1,230 7,134
rumor 6,093 471 505 7, 276
scd 3,251 624 964 4,839
semeval2016t6 2,497 417 1,249 4,163
semeval2019t7 5,217 1,485 1,827 8,529
snopes 14,416 1,868 3,154 19,438
vast 13,477 2,062 3,006 18,545
wtwt 25,193 7,897 18,194 51,284

Total 154,228 30,547 68,495 253,270

Table 4.5: Dataset statistics of the stance detection benchmark by Hardalov et al. (2021a)
also used in this paper. Note that the rumour and mtsd datasets are altered in that
benchmark as some of the data was unavailable.

number of parameters are marginal. We can see a degradation of the F1 score between

the base and large versions of the models, which can be attributed to the expressiveness

the models possess. We also experiment with the distilled version of the model and

can confirm that in terms of the final F1 score, it works on par with the larger models.

This shows that we can utilise smaller and more computationally efficient models

within the task with marginal degradation in overall performance.
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Label Description

Positive agree, argument for, for, pro, favor, support, endorse
Negative disagree, argument against, against, anti, con, undermine, deny, refute
Discuss discuss, observing, question, query, comment
Other unrelated, none, comment
Neutral neutral

Table 4.6: Hard stance label mapping employed in this paper, following the stance detection
benchmark by Hardalov et al. (2021a).
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TESTEDreberta-large 69.12 64.82 56.97 83.11 52.76 64.71 82.10 83.17 78.61 63.96 66.58 69.91 58.72 70.98 62.79 88.06 57.47
TESTEDxlm-reberta-large 68.86 64.35 57.0 82.71 52.93 64.75 81.72 82.71 78.38 63.66 66.71 69.76 58.27 71.29 62.73 87.75 57.2
TESTEDreberta-base 65.32 59.71 51.86 76.75 50.23 61.35 78.84 82.09 73.31 62.87 65.46 63.89 58.3 67.28 58.28 83.81 51.09
TESTEDxlm-reberta-base 65.05 60.26 51.96 76.2 51.82 58.74 74.68 77.9 72.61 62.71 66.08 69.74 53.27 65.83 59.09 87.92 52.08

TESTEDdistilroberta-base 68.86 61.78 56.94 80.36 46.29 64.1 79.26 81.37 73.44 62.6 63.4 63.75 56.53 68.35 57.27 81.93 56.3

Table 4.7: In-domain results reported with macro averaged F1, with varying backbones when
using TESTED.
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5SynDARin: Synthesising
Datasets for Automated
Reasoning in Low-Resource
Languages

5.1 Introduction
Question Answering (QA) has been a hallmark task for testing reading compre-

hension and reasoning capabilities in NLP systems. The availability of numerous

English benchmarks that frame the problem as extractive, cloze-style or open-domain

(Yang et al., 2015b; Rajpurkar et al., 2016; Chen et al., 2017a) reasoning tasks, along

with novel pre-trained language models (PLMs) (Devlin et al., 2018; Lewis et al.,

2019a) and LLMs (Touvron et al., 2023b; Jiang et al., 2023; Achiam et al., 2023)

allowed for the development and granular evaluation of QA systems that occasionally

boast human-like or better performance (Devlin et al., 2018; Min et al., 2023; Rogers

et al., 2023). Cross-lingual alignment through translation-following has improved

performance on multilingual benchmarks like XQUAD and MLQA (Ranaldi and Pucci,

2023). Although some concentrated effort has been made to create multilingual

QA resources (Lewis et al., 2019b; Asai et al., 2018; Liu et al., 2019a), the datasets

remain rather scarce and usually cover a small selected set of languages due to the

labour-intensive annotation costs. The proposed methods suggest using direct machine

translation (Lewis et al., 2019b; Carrino et al., 2019) or multilingual synthetic data

generation (Riabi et al., 2020; Agrawal et al., 2023; Shakeri et al., 2020). However,

these approaches are directly bound to introduce biases and hallucinations during

translation (Artetxe et al., 2020), cross-lingual transfer (Lauscher et al., 2020; Guer-

reiro et al., 2023) or generation (Ahuja et al., 2023). These limitations directly hinder

the possibility to develop and evaluate the multilingual QA capabilities of language

models in low-resource languages.

In this work, we propose SynDARin, a novel method for synthesising datasets for

automated reasoning in low-resource languages that circumvents the above-mentioned

obstacles and test it by creating a QA dataset for the Armenian language, which has

virtually no presence of structured NLP datasets (Avetisyan and Broneske, 2023). We

mine parallel English and Armenian introductory paragraphs from the same diverse
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English QA  Dataset

Translated Raw
Question Answering

Dataset

Validation and
Filtering

Question
Answering Dataset
For Low-Resource

Language 

  [Instructions]

Generate 10 multiple-choice questions based on the context provided
below. 
Each question must have four answer choices (1, 2, 3, 4), and the
correct answer should be indicated explicitly. 
Do not generate multiple-choice questions in any other format.
Ensure that the questions are non-trivial and cover various aspects of the
text. 
The correct answer to each question should be explicitly stated within the
paragraph:

  [Examples]
1. What is the capital of France?
   1. Paris
   2. Rome
   3. Berlin
   4. Madrid
Answer: 1. Paris
...

 [Paragraph]

The 58th Annual Grammy Awards was held on February 15, 2016, at the
Staples Center in Los Angeles. ...

Question Generation 
LLM

         Translation of 
            Questions and 

             Answers

Model Prompt

Generate Multiple Choice
Question-Answer pairs 

«Գրեմմի» 58-րդ
մրցանակաբաշխություն

Գրեմմիի 58-րդ
մրցանակաբաշխությունը (անգլ.՝ 58th Annual
Grammy Awards) կայացել
է 2016 թվականի փետրվարի 15-ին Սթեյփլս
սենթր կենտրոնում, Լոս Անջելես, Կալիֆորնիա։
Մրցանակաբաշխությունը ճանաչել է լավագույն
ձայնագրությունները, ստեղծագործությունները և
տարվա լավագույն երաժիշտներին, որոնք իրենց
գործունեությունն են
ծավալել 2014 թվականի հոկտեմբերի 1-ից
մինչև 2015 թվականի սեպտեմբերի 30-ը[1]։ 

...

58th Annual Grammy Awards

The 58th Annual Grammy Awards was held on
February 15, 2016, at the Staples Center in Los
Angeles. The ceremony recognizes the best recordings,
compositions and artists of the eligibility year, which
was from October 1, 2014, to September 30, 2015.[2] 

...

Parallel paragraph
mining with Wiki-API
and Length matching

Figure 5.1: The proposed framework is comprised of three components: (i) a module for
mining parallel paragraphs using wiki-API and length matching; (ii) generating a
synthetic question-answering dataset with an LLM using the mined English para-
graphs; (iii) translating the question-answer pairs and Filtering/Validating them
for obtaining a high-quality synthetic QA dataset in the low-resource language.

set of Wikipedia articles, ensuring that the contents match by comparing their relative

length. Similar mining approaches have been shown to be efficient for this task (Lewis

et al., 2021; Artetxe and Schwenk, 2019). This allows us to obtain human-curated text

from diverse topics while bypassing a wide chunk of direct content translation and

annotation. Given the English subset of this data, we generate MC question-answer

pairs by prompting an LLM to produce queries with an answer explicitly mentioned

within the paragraph. Following Lewis et al. (2019b), we filter out examples that do

not contain the answer substring verbatim in the paragraph and additionally perform

a human evaluation on a subset of 50 examples and show that 98% of these question-

answer pairs are answerable and maintain quality. The produced question-answers

are subsequently translated using an automated tool and further validated by answer

substring and semantic matching in the parallel Armenian paragraph. This allows us

to mitigate the likelihood of hallucinated, biased, and inconsistent entries in the final

QA dataset. Our human evaluation with native Armenian speakers shows that 70% of

such corrupted examples are removed. We use the dataset as a reasoning benchmark

for Armenian and evaluate several LLMs in zero-shot, few-shot, and fine-tuned modes.

We show that the dataset cannot be trivially solved, thus highlighting it as a useful

resource for measuring model performance. In sum, our contributions are as follows:

(i) a novel method for QA dataset construction in low-resource languages, (ii) a QA
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Who Where What When Which How General Why
304 128 1536 215 473 244 76 16

Table 5.1: Frequency of Question Types in the generated English question-answer pairs.

dataset in Armenian, (iii) ablations showing the quality of the generated samples, and

(iv) an evaluation of several LLM families on the QA dataset.

5.2 Methodology
An outline of SynDARin can be seen in fig. 5.1.

5.2.1 Parallel Data Mining
Given parallel English and Armenian introductory paragraph tokens PEn = (T1, . . . Tn),
PArm = (T1, . . . Tm) obtained from a diverse set of Wiki articles, we want to save the

segments that contain the same content. As the introductory paragraphs in Wikipedia

contain highly similar information (Lewis et al., 2019b), we found that filtering out

the paragraph pairs based on their relative view count and the number of tokens, i.e.

length, is sufficient. To do this, we simply define a conditional rejection process on

Wikipedia pages that have been viewed more than 1000 and edited more than 5 times

|∥PEn∥−∥PArm∥|≤ KDM, where KDM is the threshold for the length difference. A higher

length difference would imply that the contents of the paragraphs are misaligned, thus

making us reject such samples. Consequently, we are able to obtain naturally written

human-curated parallel paragraphs that cover a diverse set of topics.

5.2.2 QA Generation
After obtaining the parallel data, we prompt an LLM M with instructions I =

(T1, . . . T|I|) and 10 in-context example demonstrations E = (E1, . . . E10), where ∀i, Ei =
(T1, . . . T|Ei|), to generate diverse English MC question-answer pairsKEng = {(q1, a1) . . . (qN , aN)}
given an English context paragraph PEn:

qi, ai ∼
|Ki|∏
t=1

PM
(
T

(i)
t | T (i)

1 , ..., T
(i)
t−1, I, E ,PEn

)
(5.1)

We filter out all repeating questions, ∀{i, j : i ̸= j}, qi ̸= qj, and question-answer

pairs where the answer span is not exactly mentioned within the text, i.e. ai ̸⊂ PEn.

An example input used for generation can be seen in fig. 5.1. This generation and

validation pipeline resembles the ones in Lewis et al. (2021); Agrawal et al. (2023),

which have shown successful question-generation results for the English language.

Several examples of produced questions are available in section 5.6.
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Problem type(%) Filtered Unfiltered

Partially Missing Info 38 77
Bad Translation 5 51
Partially Correct Answers 22 31
Several Correct Answers 27 45
Date Mismatch 13 17
Other 8 22

Table 5.2: Unanswerable sample analysis before(Unfiltered) and after(Filtered) the validation.
Annotators can choose multiple reasons per sample.

5.2.3 Translation and Validation
We transfer the generated question-answer pairs KEng into Armenian by using the

Google Translate API to obtain KArm. To mitigate the inconsistencies introduced during

the translation process, we save only the samples where the translated answer ai ∈
KArm is contained within and semantically related to the paragraph PArm. To do this, we

use a fuzzy substring matching function F : T × T → [0, 1], along with a multilingual

language modelMsim : T → Rd to measure semantic similarity, where T is an arbitrary

set of tokens and d is the dimensionality of the embedding space of the model. Samples

below a certain threshold, F(ai,PArm) ≤ KFuzz and cos(M(ai),M(PArm)) ≤ KSim are

filtered out. Note that exact matching is insufficient, as the morphology of the

translated answer tokens can vary in the low-resource language. The multiple-choice

answers are balanced uniformly in the final dataset so as not to introduce a bias

toward any particular answer ordering.

5.3 Experimental Setup
5.3.1 QA Generation

Our QA generation uses GPT-4 (Achiam et al., 2023), known for generating high-

quality text (Zhou et al., 2023b) and synthetic data (Hämäläinen et al., 2023; Li et al.,

2023).

5.3.2 Substring Matching and Semantic Similarity
We employ Levenshtein distance for fuzzy substring matching (F) and multilingual

sentence embeddings (Reimers and Gurevych, 2019) (Msim) for semantic similarity

using cosine distance.
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Figure 5.2: BERTopic embeddings similarity heatmap for the top 6 frequent topics in the
mined English paragraphs.

5.3.3 Armenian QA Benchmarking
We benchmark GPT-3.5 (Achiam et al., 2023), CMD-R, and CMD-R+ (Cohere,

2024) using {0, 2, 4, 6} in-context examples with few-shot prompting (Brown et al.,

2020b) on the Armenian QA dataset. We further frame the task as classification with

multiple-choice answers and perform supervised fine-tuning with a recipe (Mosbach

et al., 2021) on XLM-RoBERTa-base (Conneau et al., 2020), with {32, 64, . . . , 980}
training samples and benchmark it on the same testing set. Following Poliak et al.

(2018), we analyze model performance on question-only and paragraph-only inputs

for bias detection.

5.4 Results
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Accuracy

Filter 128 256 512 987

Complete 30.1% 33.5% 38.7% 39.5%
paragraph-only 26.7% 28.3% 23.9% 28.3%
question-only 22.1% 22.7% 19.4% 23.5%
Random performance 25.0%

Table 5.3: The results of fine-tuning XLM-Roberta on the Armenian QA dataset with a varying
number of training samples in different degeneracy testing scenarios.

5.4.1 English QA Dataset Generation
We mined 300 parallel English-Armenian Wikipedia paragraphs and generated 10

diverse questions with 4 MC answers each, resulting in 3000 English QA pairs.

5.4.2 Dataset Diversity
We assessed question diversity (table 5.1) and found meaningful variation consistent

with prior human-curated datasets (Lewis et al., 2019b; Rajpurkar et al., 2016).

Topic modeling using BERTopic (Grootendorst, 2022) validated the subject diversity

(fig. 5.2). A granular diversity analysis within the dataset is presented in section 5.6.

5.4.3 Human Evaluation
To assess the data quality, we follow Lewis et al. (2021) and ask two English-

speaking human annotators to manually inspect 50 randomly chosen samples from the

English QA dataset regarding the captured contextual information and answerability

of the sample question. The results show, with an inter-annotator agreement score

of Cohen’s κ = 0.99, that 98% of examples contain sufficient details to answer the

question while accurately capturing contextual information.

5.4.4 Automatic Translation and Validation
We translate the obtained 3000 QA samples and pass the results through our valida-

tion pipeline to produce 1235 filtered Armenian examples.

5.4.5 Armenian QA dataset
We use these samples and their designated Armenian paragraphs to form the QA

dataset. We split the data into 80/20 train/test buckets with 987 samples in training

and 247 in testing. We ensure that the paragraphs in the testing set are not contained

in the train set to avoid any data leakage. We maintain a uniform distribution of MC

questions within the answers, avoiding bias towards any answer ordering.
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Accuracy

Model Name 0 2 4 6

Command-R 58.7% 68.4% 64.8% 64.0%
Command-R+ 59.3% 67.2% 69.6% 70.9%
GPT-3.5 56.3% 56.3% 59.1% 54.3%

Table 5.4: Model Accuracy with a varying number of provided in-context samples before
generation.

5.4.6 Human Evaluation
We assessed the translation validation pipeline and datasets using two native-

speaking annotators. They reviewed the test set, which was mixed with 100 randomly

flagged poor samples from automatic validation. Annotators either answered the

samples or marked them as unanswerable, citing reasons from a predefined set, see

in table 5.2. Results showed that 87% of the flagged examples were unanswerable

due to insufficient context, translation errors, or hallucinations. The error breakdown

in table 5.2 highlights the quality improvement in filtered samples w.r.t. to the

abovementioned discrepancies, where annotators answered correctly in 75% of cases.

We measure the inter-annotator agreement using Cohen’s κ = 0.8. These confirm the

ability of our validation pipeline to maintain the dataset quality.

5.4.7 Benchmarks
To show the value of the created dataset, we investigate if it suffers from statistical

biases or degenerate solutions by training an XLM-RoBERTa model on inputs that

contain only the paragraph or the question, excluding everything else from the sample.

The results in table 5.3 show that regardless of the number of training samples, the

models trained with question and paragraph-only samples behave similarly to ran-

dom chance, while training with complete data gradually increases the performance,

highlighting that the dataset is unlikely to suffer from inconsistencies and degenerate

solutions and can be used for developing QA capabilities for Armenian. We further

benchmark several state-of-the-art LLMs on this dataset in supervised fine-tuning,

zero-shot and few-shot settings. We see in table 5.4 that even the largest models do

not trivially solve the dataset, showing its utility as a benchmarking tool.

5.5 Conclusion
We propose SynDARin, a novel method for constructing QA datasets for low-resource

languages and producing a dataset for the Armenian language. Systematic studies of

the reliability of the individual modules to produce diverse QA samples that maintain
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answerability and quality show the effectiveness of the method. We further use the

produced Armenian QA dataset to benchmark state-of-the-art LLMs and show the value

of the proposed resource in evaluating QA reasoning capabilities in the low-resource

language.

Limitations
The proposed methods have currently been tested only for a smaller-scale QA dataset

creation in Armenian, thus not allowing us to complete a wider cross-lingual study.

The study benchmarks should be extended and analyzed further in more multilingual,

low-resource languages. In the case of extremely rare low-resource languages, the

automatic translation part within our pipeline would require either the development

of such a translation method, robust cross-lingual transfer from a similar language, or

direct manual effort, all of which are bound to introduce either qualitative or logistic

complications while creating the final QA resource.
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5.6 Appendix
OTHER NORP GPE PERCENT PERSON DATE ORG WORK OF ART LANGUAGE QUANTITY EVENT MONEY LOC ORDINAL TIME FAC PRODUCT
3178 172 223 8 397 335 327 14 10 25 21 9 52 38 9 9 3

Table 5.5: Distribution of Entities within question-answer pairs in the generated English QA
dataset. The Entity labelling scheme follows Honnibal et al.

5.6.1 Generated Question-Answer pairs
We showcase examples of generated and validated question-answer pairs along with

their designated English paragraph PEng in table 5.6. These are representative samples
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Figure 5.3: The usage of frequent words in the top 6 frequent topics present within the mined
English paragraphs.

of the generation process, further reinforced by the fact that human evaluation of

the quality of the generation showed that 98% of the examples are answerable and

maintain quality.

5.6.2 What are the questions about?
To understand the type of inquiries asked within the questions, we employ a

pre-trained model for Named Entity Recognition (NER) from spaCy1 and detect all

the entity types mentioned within the question-answer pairs. The results can be

seen in table 5.5, showing that the object of the inquiries can vary massively from

people (PERSON) and locations (LOC) to organization (ORG), numeric values (DATE,

ORDINAL, TIME), etc. This further ensures that we are able to generate high-quality

questions with diverse compositions and object of inquiry types.

5.6.3 Topic Distribution the parallel paragraphs
To estimate the overlap within the topics found in the mined paragraphs, we use

unsupervised topic modeling BERTopic (Grootendorst, 2022) to segment the 5 most

frequently occurring segments. We measure the overlap between these by calculating

the averaged cosine distance of the topic embeddings obtained from BERTopic. The

results can be seen in fig. 5.2 and fig. 5.3, validating our hypothesis that we are able

to cover diverse themes using our parallel paragraph mining method.

1https://spacy.io/api/entityrecognizer
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Example 1: UEFA Champions League

Since the rebranding of the European Champion Clubs’ Cup as the UEFA Champions
League in 1992, 107 different players from 37 countries have scored three goals or
more in a single match (a hat-trick) on 152 occasions, representing 53 clubs from 17
leagues. The first player to achieve the feat was Juul Ellerman, who scored three times
for PSV Eindhoven in a 6–0 victory over Žalgiris on 16 September 1992. Lionel Messi
and Cristiano Ronaldo have scored three or more goals in a match eight times each in
the Champions League, more than any other player, followed by Robert Lewandowski
with six, and Karim Benzema with four.
Question: What was the original name of the UEFA Champions League?
Answers: 1. European Champion Clubs’ Cup, 2. European Premier League, 3. UEFA
Football Cup, 4. European Soccer Championship
Correct Answer: 1. European Champion Clubs’ Cup

Example 2: Sign Languages

Sign languages (also known as signed languages) are languages that use the visual-
manual modality to convey meaning, instead of spoken words. Sign languages are
expressed through manual articulation in combination with non-manual markers. Sign
languages are full-fledged natural languages with their own grammar and lexicon.
Sign languages are not universal and are usually not mutually intelligible, although
there are also similarities among different sign languages.
Question: What is the primary modality used to convey meaning in sign languages?
Answers: 1. Auditory-vocal, 2. Visual-manual, 3. Tactile-kinesthetic, 4. Olfactory-
gustatory
Correct Answer: 2. Visual-manual

Table 5.6: Examples of English paragraphs along with their generated question-answer pairs

5.6.4 Benchmarking with Armenian QA dataset
To show the usefulness of the created dataset, we benchmark several SOTA LLMs on

it in supervised fine-tuning, zero-shot and few-shot settings. We further investigate if

the dataset suffers from statistical biases or degenerate solutions by training an XLM-

RoBERTa model on inputs that contain only the paragraph or the question, excluding

everything else from the sample. The results in fig. 5.5 show us that regardless of the

amount of provided training samples, the question, and paragraph-only evaluations

behave similarly to random chance, highlighting that the dataset is unlikely to suffer

from inconsistencies and degenerate solutions.

We benchmark several LLMs, shown in fig. 5.4, using produced Armenian QA

benchmark and show that while increasing the number of model parameters and

in-context samples helps the overall model performance, still even very large models

are unable to solve the dataset trivially, thus showing its value as a benchmarking

resource.
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6Adapting Neural Link
Predictors for Data-Efficient
Complex Query Answering

6.1 Introduction
A Knowledge Graph (KG) is a knowledge base representing the relationships be-

tween entities in a relational graph structure. The flexibility of this knowledge

representation formalism allows KGs to be widely used in various domains. Examples

of KGs include general-purpose knowledge bases such as Wikidata (Vrandečić and

Krötzsch, 2014), DBpedia (Auer et al., 2007), Freebase (Bollacker et al., 2008), and

YAGO (Suchanek et al., 2007); application-driven graphs such as the Google Knowl-

edge Graph, Microsoft’s Bing Knowledge Graph, and Facebook’s Social Graph (Noy

et al., 2019); and domain-specific ones such as SNOMED CT (Bodenreider et al.,

2018), MeSH (Lipscomb, 2000), and Hetionet (Himmelstein et al., 2017) for life

sciences; and WordNet (Miller, 1992) for linguistics. Answering complex queries over

Knowledge Graphs involves a logical reasoning process where a conclusion should be

inferred from the available knowledge.

Neural link predictors (Nickel et al., 2016) tackle the problem of identifying missing

edges in large KGs. However, in many domains, it is a challenge to develop techniques

for answering complex queries involving multiple and potentially unobserved edges,

entities, and variables rather than just single edges.

Prior work proposed to address this problem using specialised neural networks

trained end-to-end for the query answering task (Hamilton et al., 2018; Daza and

Cochez, 2020; Ren et al., 2020; Ren and Leskovec, 2020; Zhu et al., 2022b), which

offer little interpretability and require training with large and diverse datasets of

query-answer pairs. These methods stand in contrast with Complex Query Decom-

position (CQD, Arakelyan et al., 2021; Minervini et al., 2022), which showed that

it is sufficient to re-use a simple link prediction model to answer complex queries,

thus reducing the amount of training data required by orders of magnitude while

allowing the possibility to explain intermediate answers. While effective, CQD does

not support negations, and fundamentally, it relies on a link predictor whose scores

are not necessarily calibrated for the complex query answering task. Adapting a neural

link predictor for the query answering task while maintaining the data and parameter
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efficiency of CQD, as well as its interpretable nature, is the open challenge we take on

in this paper.

Figure 6.1: Given a complex query Q, CQDA

adapts the neural link prediction
scores for the sub-queries to im-
prove the interactions between
them.

We propose CQDA, a lightweight adap-
tation model trained to calibrate link

prediction scores, using complex query

answering as the optimisation objective.

We define the adaptation function as an

affine transformation of the original score

with a few learnable parameters. The

low parameter count and the fact that the

adaptation function is independent of the

query structure allow us to maintain the

efficiency properties of CQD. Besides, the

calibration enables a natural extension of

CQD to queries with atomic negations.

An evaluation of CQDA on three

benchmark datasets for complex query answering shows an increase from 34.4 to

35.1 MRR over the current state-of-the-art averaged across all datasets while using

≤ 30% of the available training query types. In ablation experiments, we show that

the method is data-efficient; it achieves results comparable to the state-of-the-art

while using only 1% of the complex queries. Our experiments reveal that CQDA can

generalise across unseen query types while using only 1% of the instances from a

single complex query type during training.

6.2 Related Work
6.2.1 Link Predictors in Knowledge Graphs

Reasoning over KGs with missing nodes has been widely explored throughout the

last few years. One can approach the task using latent feature models, such as neural

link predictors (Bordes et al., 2013; Trouillon et al., 2016; Yang et al., 2014a; Dettmers

et al., 2018; Sun et al., 2019; Balažević et al., 2019; Amin et al., 2020) which learn

continuous representations for the entities and relation types in the graph and can

answer atomic queries over incomplete KGs. Other research lines tackle the link

prediction problem through graph feature models (Xiong et al., 2017; Das et al.,

2017; Hildebrandt et al., 2020; Yang et al., 2017; Sadeghian et al., 2019), and Graph

Neural Networks (GNNs, Schlichtkrull et al., 2018; Vashishth et al., 2019a; Teru et al.,

2020).
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6.2.2 Complex Query Answering
Complex queries over knowledge graphs can be formalised by extending one-hop

atomic queries with First Order Logic (FOL) operators, such as the existential quantifier

(∃), conjunctions (∧), disjunctions (∨) and negations (¬). These FOL constructs can be

represented as directed acyclic graphs, which are used by embedding-based methods

that represent the queries using geometric objects (Ren et al., 2020; Hamilton et al.,

2018) or probabilistic distributions (Ren and Leskovec, 2020; Zhang et al., 2021;

Choudhary et al., 2021) and search the embedding space for the answer set. It is

also possible to enhance the properties of the embedding space using GNNs and

Fuzzy Logic (Zhu et al., 2022b; Chen et al., 2022). A recent survey (Ren et al., 2023)

provides a broad overview of different approaches. Recent work (Daza and Cochez,

2020; Hamilton et al., 2018; Ren and Leskovec, 2020) suggests that such methods

require a large dataset with millions of diverse queries during the training, and it can

be hard to explain their predictions.

Our work is closely related to CQD (Arakelyan et al., 2021; Minervini et al., 2022),

which uses a pre-trained neural link predictor along with fuzzy logical t-norms and t-

conorms for complex query answering. A core limitation of CQD is that the pre-trained

neural link predictor produces scores not calibrated to interact during the complex

query-answering process. This implies that the final scores of the model are highly

dependent on the choice of the particular t-(co)norm aggregation functions, which,

in turn, leads to discrepancies within the intermediate reasoning process and final

predictions. As a side effect, the lack of calibration also means that the equivalent of

logical negation in fuzzy logic does not work as expected.

With CQDA, we propose a solution to these limitations by introducing a scalable

adaptation function that calibrates link prediction scores for query answering. Further-

more, we extend the formulation of CQD to support a broader class of FOL queries,

such as queries with atomic negation.

6.3 Background
A Knowledge Graph G ⊆ E×R×E can be defined as a set of subject-predicate-object

⟨s, p, o⟩ triples, where each triple encodes a relationship of type p ∈ R between the

subject s ∈ E and the object o ∈ E of the triple, where E and R denote the set of

all entities and relation types, respectively. A Knowledge Graph can be represented

as a First-Order Logic Knowledge Base, where each triple ⟨s, p, o⟩ denotes an atomic

formula p(s, o), with p ∈ R a binary predicate and s, o ∈ E its arguments.
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6.3.1 First-Order Logical Queries
We are concerned with answering logical queries over incomplete knowledge graphs.

We consider queries that use existential quantification (∃) and conjunction (∧) opera-

tions. Furthermore, we include disjunctions (∨) and atomic negations (¬). We follow

Ren et al. (2020) by transforming a logical query into Disjunctive Normal Form (DNF,

Davey and Priestley, 2002), i.e. a disjunction of conjunctive queries, along with the

subsequent extension with atomic negations in (Ren and Leskovec, 2020). We denote

such queries as follows:

Q[A] ≜?A : ∃V1, . . . , Vm.
(
e1

1 ∧ . . . ∧ e1
n1

)
∨ . . . ∨

(
ed

1 ∧ . . . ∧ ed
nd

)
,

where ej
i = p(c, V ), with V ∈ {A, V1, . . . , Vm}, c ∈ E , p ∈ R,

or ej
i = p(V, V ′), with V, V ′ ∈ {A, V1, . . . , Vm}, V ̸= V ′, p ∈ R.

(6.1)

In eq. (6.1), the variable A is the target of the query, V1, . . . , Vm denote the bound
variable nodes, while c ∈ E represent the input anchor nodes, which correspond to

known entities in the query. Each ei denotes a logical atom, with either one (p(c, V ))
or two variables (p(V, V ′)).

The goal of answering the logical query Q consists in finding the answer set JQK ⊆ E
such that a ∈ JQK iff Q[a] holds true. As illustrated in fig. 6.1, the dependency graph of

a conjunctive query Q is a graph where nodes correspond to variable or non-variable

atom arguments in Q and edges correspond to atom predicates. We follow Hamilton

et al. (2018) and focus on queries whose dependency graph is a directed acyclic graph,

where anchor entities correspond to source nodes, and the query target A is the unique

sink node.

Example 6.3.1 (Complex Query). Consider the question “Which people are German
and produced the music for the film Constantine?”. It can be formalised as a complex

query Q ≡ ?T : country(Germany, T ) ∧ producerOf(Constantine, T ), where Germany
and Constantine are anchor nodes, and T is the target of the query, as presented in

fig. 6.1. The answer JQK corresponds to all the entities in the knowledge graph that

are German composers for the film Constantine.

6.3.2 Continuous Query Decomposition
CQD is a framework for answering EPFO logical queries in the presence of missing

edges (Arakelyan et al., 2021; Minervini et al., 2022). Given a query Q, CQD defines

the score of a target node a ∈ E as a candidate answer for a query as a function of the

score of all atomic queries in Q, given a variable-to-entity substitution for all variables

in Q.
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Each variable is mapped to an embedding vector that can either correspond to an

entity c ∈ E or to a virtual entity. The score of each of the query atoms is determined

individually using a neural link predictor (Nickel et al., 2016). Then, the score of the

query with respect to a given candidate answer Q[a] is computed by aggregating all of

the atom scores using t-norms and t-conorms – continuous relaxations of the logical

conjunction and disjunction operators.

6.3.3 Neural Link Predictors
A neural link predictor is a differentiable model where atom arguments are first

mapped into a d-dimensional embedding space and then used to produce a score for

the atom. More formally, given a query atom p(s, o), where p ∈ R and s, o ∈ E , the

score for p(s, o) is computed as ϕp(es, eo), where es, eo ∈ Rd are the embedding vectors

of s and o, and ϕp : Rd × Rd 7→ [0, 1] is a scoring function computing the likelihood

that entities s and o are related by the relationship p. Following Arakelyan et al.

(2021); Minervini et al. (2022), in our experiments, we use a regularised variant of

ComplEx (Trouillon et al., 2016; Lacroix et al., 2018) as the neural link predictor

of choice, due to its simplicity, efficiency, and generalisation properties (Ruffinelli

et al., 2020). To ensure that the output of the neural link predictor is always in [0, 1],
following Arakelyan et al. (2021); Minervini et al. (2022), we use either a sigmoid

function or min-max re-scaling.

6.3.4 T-norms and Negations
Fuzzy logic generalises over Boolean logic by relaxing the logic conjunction (∧),

disjunction (∨) and negation (¬) operators through the use of t-norms, t-conorms, and

fuzzy negations. A t-norm ⊤ : [0, 1]× [0, 1] 7→ [0, 1] is a generalisation of conjunction

in fuzzy logic (Klement et al., 2000, 2004). Some examples include the Gödel t-norm
⊤min(x, y) = min{x, y}, the product t-norm ⊤prod(x, y) = x × y, and the Łukasiewicz
t-norm ⊤Luk(x, y) = max{0, x+ y − 1}.

Analogously, t-conorms are dual to t-norms for disjunctions – given a t-norm ⊤,

the complementary t-conorm is defined by ⊥(x, y) = 1 − ⊤(1 − x, 1 − y). In our

experiments, we use the Gödel t-norm and product t-norm with their corresponding

t-conorms.

Fuzzy logic also encompasses negations n : [0, 1] 7→ [0, 1]. The standard nstand(x) =
1 − x and strict cosine ncos = 1

2(1 + cos(πx)) are common examples of fuzzy nega-

tions(Kruse and Moewes, 1993). To support a broader class of queries, we introduce

the standard and strict cosine functions to model negations in CQDA, which was not

considered in the original formulation of CQD.
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6.3.5 Continuous Query Decomposition
Given a DNF query Q as defined in eq. (6.1), CQD aims to find the variable

assignments that render Q true. To achieve this, CQD casts the problem of query

answering as an optimisation problem. The aim is to find a mapping from variables to

entities S = {A← a, V1 ← v1, . . . , Vm ← vm}, where a, v1, . . . , vm ∈ E are entities and

A, V1, . . . , Vm are variables, that maximises the score of Q:

arg max
S

score(Q, S) = arg max
A,V1,...,m∈E

(
e1

1⊤ . . .⊤e1
n1

)
⊥ . . .⊥

(
ed

1⊤ . . .⊤ed
nd

)
where ej

i = ϕp(ec, eV ), with V ∈ {A, V1, . . . , Vm}, c ∈ E , p ∈ R

or ej
i = ϕp(eV , eV ′), with V, V ′ ∈ {A, V1, . . . , Vm}, V ̸= V ′, p ∈ R,

(6.2)

where ⊤ and ⊥ denote a t-norm and a t-conorm – a continuous generalisation of the

logical conjunction and disjunction, respectively – and ϕp(es, eo) ∈ [0, 1] denotes the

neural link prediction score for the atom p(s, o).

6.3.6 Complex Query Answering via Combinatorial
Optimisation

Following Arakelyan et al. (2021); Minervini et al. (2022), we solve the optimisation

problem in eq. (6.2) by greedily searching for a set of variable substitutions S = {A←
a, V1 ← v1, . . . , Vm ← vm}, with a, v1, . . . , vm ∈ E , that maximises the complex query

score, in a procedure akin to beam search. We do so by traversing the dependency

graph of a query Q and, whenever we find an atom in the form p(c, V ), where p ∈ R,

c is either an entity or a variable for which we already have a substitution, and V is a

variable for which we do not have a substitution yet, we replace V with all entities

in E and retain the top-k entities t ∈ E that maximise ϕp(ec, et) – i.e. the most likely

entities to appear as a substitution of V according to the neural link predictor. As we

traverse the dependency graph of a query, we keep a beam with the most promising

variable-to-entity substitutions identified so far.

Example 6.3.2 (Combinatorial Optimisation). Consider the query “Which musi-
cians M received awards associated with a genre g?, which can be rewritten as

?M : ∃A.assoc(g, A) ∧ received(A,M). To answer this query using combinatorial

optimisation, we must find the top-k awards a that are candidates to substitute the

variable A in assoc(g, A). This will allow us to understand the awards associated with

the genre g. Afterwards, for each candidate substitution for A, we search for the top-k

musicians m that are most likely to substitute M in received(A,M), ending up with

k2 musicians. Finally, we rank the k2 candidates using the final query score produced

by a t-norm. ■
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6.4 Calibrating Link Prediction Scores on
Complex Queries

The main limitation in the CQD method outlined in section 6.3 is that neural link

predictors ϕ are trained to answer simple, atomic queries, and the resulting answer

scores are not trained to interact with one another.

Example 6.4.1. Consider the running example query “Which people are German and
produced the music for the film Constantine?” which can be rewritten as a complex

query Q ≡ ?T : country(Germany, T ) ∧ producerOf(Constantine, T ). To answer this

complex query, CQD answers the atomic sub-queries Q1 = country(Germany, T ) and

Q2 = producerOf(Constantine, T ) using a neural link predictor, and aggregates the

resulting scores using a t-norm. However, the neural link predictor was only trained on

answering atomic queries, and the resulting scores are not calibrated to interact with

each other. For example, the scores for the atomic queries about the relations country

and producerOf may be on different scales, which causes problems when aggregating

such scores via t-norms. Let us assume the top candidates for the variable T coming

from the atomic queries Q1,Q2 are A1 ← Sam Shepard and A2 ← Klaus Badelt,
with their corresponding neural link prediction scores 1.2 and 8.9, produced using

ϕcountry and ϕproducerOf. We must also factor in the neural link prediction score of the

candidate A1 for query Q2 at 7.4 and vice versa at 0.5. When using the Gödel t-norm

⊤min(x, y) = min{x, y}, the scores associated with the variable assignments A1,A2

are computed as, min(8.0, 0.5) = 0.5 min(7.4, 1.2) = 1.2. For both answers A1 and

A2, the scores produced by ϕcountry for Q1 are always lower than the scores produced

with ϕproducerOf for Q2, meaning that the scores of the latter are not considered when

producing the final answer. This phenomenon can be broadly observed in CQD,

illustrated in fig. 6.2. ■

To address this problem, we propose a method for adaptively learning to cali-

brate neural link prediction scores by back-propagating through the complex query-

answering process. More formally, let ϕp denote a neural link predictor. We learn an

additional adaptation function ρθ, parameterised by θ = {α, β}, with α, β ∈ R. Then,

we use the composition of ρθ and ϕp, ρθ ◦ ϕp, such that:

ρθ(ϕp(eV , eV ′)) = ϕp(eV , eV ′)(1 + α) + β. (6.3)

Here, the function ρ defines an affine transformation of the score and when the

parameters α = β = 0, the transformed score ρθ(ϕp(eV , eV ′)) recovers the original

scoring function. The parameters θ can be conditioned on the representation of the
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predicate p and the entities V and V ′, i.e. θ = ψ(eV , ep, eV ′); here, ψ is an end-to-end

differentiable neural module with parameters W. eV , ep, eV ′ respectively denote

the representations of the subject, predicate, and object of the atomic query. In our

experiments, we consider using one or two linear transformation layers with a ReLU

non-linearity as options for ψ.

The motivation for our proposed adaptation function is twofold. Initially, it is

monotonic, which is desirable for maintaining the capability to interpret intermediate

scores, as in the original formulation of CQD. Moreover, we draw inspiration from the

use of affine transformations in methodologies such as Platt scaling (Platt et al., 1999),

which also use a linear function for calibrating probabilities and have been applied in

the problem of calibration of link prediction models (Tabacof and Costabello, 2020).

Parameter-efficient adaptation functions have also been applied effectively in other

domains, such as adapter layers (Houlsby et al., 2019) used for fine-tuning language

models in NLP tasks.

6.4.1 Training
For training the score calibration component in eq. (6.3), we first compute how

likely each entity a′ ∈ E is to be an answer to the query Q. To this end, for each

candidate answer a′ ∈ E , we compute the answer score as the complex query score

assuming that a′ ∈ E is the final answer as:

score(Q, A← a′) = max
S

score(Q, S), where A← a′ ∈ S. (6.4)

eq. (6.4) identifies the variable-to-entity substitution S that 1) maximises the query

score score(Q, S), defined in eq. (6.2), and 2) associates the answer variable A

with a′ ∈ E , i.e. A ← a′ ∈ S. For computing S with the additional constraint that

A← a′ ∈ S, we use the complex query answering procedure outlined in section 6.3.

We optimise the additional parameters W introduced in section 6.4, by gradient

descent on the likelihood of the true answers on a dataset D = {(Qi, ai)}|D|
i=1 of query-

answer pairs by using a 1-vs-all cross-entropy loss, introduced by Lacroix et al. (2018),

which was also used to train the neural link prediction model:

L(D) =
∑

(Qi,ai)∈D
−score(Qi, A← ai) + log

∑
a′∈E

exp (score(Qi, A← a′))
 . (6.5)

In addition to the 1-vs-all (Ruffinelli et al., 2020) loss in eq. (6.5), we also experiment

with the binary cross-entropy loss, using the negative sampling procedure from Ren

and Leskovec (2020).
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Split Query Types FB15K FB15K-237 NELL995

Train
1p, 2p, 3p, 2i, 3i 273,710 149,689 107,982

2in, 3in, inp, pin, pni 27,371 14,968 10,798

Valid
1p 59,078 20,094 16,910

Others 8,000 5,000 4,000

Test
1p 66,990 22,804 17,021

Others 8,000 5,000 4,000

Table 6.1: Statistics on the different types of
query structures in FB15K, FB15K-
237, and NELL995.

6.5 Experiments
6.5.1 Datasets

To evaluate the complex query answering capabilities of our method, we use a

benchmark comprising of 3 KGs: FB15K (Bordes et al., 2013), FB15K-237 (Toutanova

and Chen, 2015) and NELL995 (Xiong et al., 2017). For a fair comparison with

previous work, we use the datasets of FOL queries proposed by Ren and Leskovec

(2020), which includes nine structures of EPFO queries and 5 query types with

atomic negations, seen in fig. 6.3. The datasets provided by Ren and Leskovec (2020)

introduce queries with hard answers, which are the answers that cannot be obtained

by direct graph traversal; in addition, this dataset does not include queries with more

than 100 answers, increasing the difficulty of the complex query answering task. The

statistics for each dataset can be seen in table 6.1. Note that during training, we only

use 2i, 3i, 2in, and 3in queries, corresponding to ≤ 30% of the training dataset, for

the adaptation of the neural link predictor. To assess the model’s ability to generalise,

we evaluate it on all query types.

6.5.2 Evaluation Protocol
For a fair comparison with prior work, we follow the evaluation scheme in Ren and

Leskovec (2020) by separating the answer of each query into easy and hard sets. For

test and validation splits, we define hard queries as those that cannot be answered

via direct traversal along the edges of the KG and can only be answered by predicting

at least one missing link, meaning non-trivial reasoning should be completed. We

evaluate the method on non-trivial queries by calculating the rank r for each hard

answer against non-answers and computing the Mean Reciprocal Rank (MRR).
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Figure 6.3: Query structures considered in our experiments, as proposed by Ren and Leskovec
(2020) – the naming of each query structure corresponds to projection (p), in-
tersection (i), union (u) and negation (n), reflecting how they were generated
in the BetaE paper (Ren and Leskovec, 2020). An example of a pin query is
? T : ∃V.p(a, V ), q(V, T ),¬r(b, T ), where a and b are anchor nodes, V is a variable
node, and T is the query target node.

6.5.3 Baselines
We compare CQDA with state-of-the-art methods from various solution families in

section 6.2. In particular, we choose GQE (Hamilton et al., 2018), Query2Box (Ren

et al., 2020), BetaE (Ren and Leskovec, 2020) and ConE (Zhang et al., 2021) as

strong baselines for query embedding methods. We also compare with methods based

on GNNs and fuzzy logic, such as FuzzQE (Chen et al., 2022), GNN-QE (Zhu et al.,

2022b), and the original CQD (Arakelyan et al., 2021; Minervini et al., 2022), which

uses neural link predictors for answering EPFO queries without any fine-tuning on

complex queries.

6.5.4 Model Details
Our method can be used with any neural link prediction model. Following Arakelyan

et al. (2021); Minervini et al. (2022), we use ComplEx-N3 (Lacroix et al., 2018). We

identify the optimal hyper-parameters using the validation MRR. We train for 50, 000
steps using Adagrad as an optimiser and 0.1 as the learning rate. The beam-size hyper-

parameter k was selected in k ∈ {512, 1024, . . . , 8192}, and the loss was selected across

1-vs-all (Lacroix et al., 2018) and binary cross-entropy with one negative sample.

6.5.5 Parameter Efficiency
We use the query types 2i, 3i, 2in, 3in for training the calibration module proposed in

section 6.4. We selected these query types as they do not require variable assignments

other than for the answer variable A, making the training process efficient. As the

neural link prediction model is frozen, we only train the adapter layers that have a

maximum of W ∈ R2×2d learnable weights. Compared to previous works, we have
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Model avgp avgn 1p 2p 3p 2i 3i pi ip 2u up 2in 3in inp pin pni

FB15K

GQE 28.0 - 54.6 15.3 10.8 39.7 51.4 27.6 19.1 22.1 11.6 - - - - -
Q2B 38.0 - 68.0 21.0 14.2 55.1 66.5 39.4 26.1 35.1 16.7 - - - - -

BetaE 41.6 11.8 65.1 25.7 24.7 55.8 66.5 43.9 28.1 40.1 25.2 14.3 14.7 11.5 6.5 12.4
CQD-CO 46.9 - 89.2 25.3 13.4 74.4 78.3 44.1 33.2 41.8 21.9 - - - - -

CQD-Beam 58.2 - 89.2 54.3 28.6 74.4 78.3 58.2 67.7 42.4 30.9 - - - - -
ConE 49.8 14.8 73.3 33.8 29.2 64.4 73.7 50.9 35.7 55.7 31.4 17.9 18.7 12.5 9.8 15.1

GNN-QE 72.8 38.6 88.5 69.3 58.7 79.7 83.5 69.9 70.4 74.1 61.0 44.7 41.7 42.0 30.1 34.3
CQDA 70.4 42.8 89.2 64.5 57.9 76.1 79.4 70.0 70.6 68.4 57.9 54.7 47.1 37.6 35.3 24.6

FB15K-237

GQE 16.3 - 35.0 7.2 5.3 23.3 34.6 16.5 10.7 8.2 5.7 - - - - -
Q2B 20.1 - 40.6 9.4 6.8 29.5 42.3 21.2 12.6 11.3 7.6 - - - - -

BetaE 20.9 5.5 39.0 10.9 10.0 28.8 42.5 22.4 12.6 12.4 9.7 5.1 7.9 7.4 3.5 3.4
CQD-CO 21.8 - 46.7 9.5 6.3 31.2 40.6 23.6 16.0 14.5 8.2 - - - - -

CQD-Beam 22.3 - 46.7 11.6 8.0 31.2 40.6 21.2 18.7 14.6 8.4 - - - - -
ConE 23.4 5.9 41.8 12.8 11.0 32.6 47.3 25.5 14.0 14.5 10.8 5.4 8.6 7.8 4.0 3.6

GNN-QE 26.8 10.2 42.8 14.7 11.8 38.3 54.1 31.1 18.9 16.2 13.4 10.0 16.8 9.3 7.2 7.8
CQDA 25.3 10.9 46.7 13.6 11.4 33.1 45.4 26.5 20.4 17.5 11.4 13.6 16.8 9.5 8.9 5.8

NELL995

GQE 18.6 - 32.8 11.9 9.6 27.5 35.2 18.4 14.4 8.5 8.8 - - - - -
Q2B 22.9 - 42.2 14.0 11.2 33.3 44.5 22.4 16.8 11.3 10.3 - - - - -

BetaE 24.6 5.9 53.0 13.0 11.4 37.6 47.5 24.1 14.3 12.2 8.5 5.1 7.8 10.0 3.1 3.5
CQD-CO 28.8 - 60.4 17.8 12.7 39.3 46.6 30.1 22.0 17.3 13.2 - - - - -

CQD-Beam 28.6 - 60.4 20.6 11.6 39.3 46.6 25.4 23.9 17.5 12.2 - - - - -
ConE 27.2 6.4 53.1 16.1 13.9 40.0 50.8 26.3 17.5 15.3 11.3 5.7 8.1 10.8 3.5 3.9

GNN-QE 28.9 9.7 53.3 18.9 14.9 42.4 52.5 30.8 18.9 15.9 12.6 9.9 14.6 11.4 6.3 6.3
CQDA 32.3 13.3 60.4 22.9 16.7 43.4 52.6 32.1 26.4 20.0 17.0 15.1 18.6 15.8 10.7 6.5

Table 6.2: MRR results for FOL queries on the testing sets. avgp designates the averaged
results for EPFO queries (∧,∨), while avgn pertains to queries including negations
(¬). The results for CQD are taken from Minervini et al. (2022), while all the
remaining come from Zhu et al. (2022b).

≈ 103 times fewer trainable parameters, as shown in table 6.3, while maintaining

competitive results.

6.5.6 Results
6.5.7 Complex Query Answering

table 6.2 shows the predictive accuracy of CQDA for answering complex queries

compared to the current state-of-the-art methods. Some methods do not support

queries that include negations; we leave the corresponding entries blank. We can

see that CQDA increases the MRR from 34.4 to 35.1 averaged across all query types

and datasets. In particular, CQDA shows the most substantial increase in predictive

accuracy on NELL995 by producing more accurate results than all other methods for

all query types. CQDA achieves such results using less than 30% of the complex query

types during training while maintaining competitive results across each dataset and

query type. For queries including negations, CQDA achieves a relative improvement

of 6.8% to 37.1%, which can be attributed to the fact that the adaptation is completed

with query types 2in and 3in that include negation, which allows for learning an
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Figure 6.4: Average test MRR score (y-axis)
of CQDA using 1% and 100% of
the training queries from FB15K-
237 throughout the training iter-
ations (x-axis).

Number of parameters

FB15K FB15K-237 NELL

CQDA 1.3× 107︸ ︷︷ ︸
frozen

1.3× 107︸ ︷︷ ︸
frozen

7.5× 107︸ ︷︷ ︸
frozen

+4× 103 +4× 103 +4× 103

BetaE 1.3× 107 1.3× 107 6× 107

Q2B 1.2× 107 1.2× 107 6× 107

GNN-QE 3× 106 3× 106 3× 106

ConE 1.2× 107 1.2× 107 6× 107

GQE 1.5× 107 1.5× 107 7.5× 107

Table 6.3: Number of parameters used by dif-
ferent complex query answering
methods – values for GNN-QE are
approximated using the backbone
NBFNet (Zhu et al., 2021), while
the remaining use their original
studies.

adaptation layer that is robust for these types of queries. In our experiments, we

found that calculating the neural adaptation parameters θ of the adaptation function

ρθ in eq. (6.3) as a function of the predicate representation yields the most accurate

results followed by computing θ as a function of the source entity and predicate

representation, which is strictly more expressive. In section 6.7.1, we show the impact

of the adaptation layers on the neural link prediction scores.

The adaptation process does not require data-intensive training and allows the

model to generalise to query types not observed during training. This prompts us

to investigate the minimal amount of data samples and query types required for

adaptation.

6.5.8 Data Efficiency
To analyse the data efficiency of CQDA, we compare the behaviour of the pre-trained

link predictors tuned with 1% and 100% of the training complex query examples in

FB15K-237, presented in table 6.4. For adapting on 1% of the training complex

queries, we used the same hyper-parameters we identified when training on the full

dataset. Even when using 1% of the complex training queries (3290 samples) for

tuning, the model still achieves competitive results, with an average MRR difference of

2.2 compared to the model trained using the entire training set. CQDA also produces

higher test MRR results than GNN-QE with an average MRR increase of 4.05.

We can also confirm that the adaptation process converges after ≤ 10% of the

training epochs as seen in fig. 6.4. The convergence rate is not hindered when using
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Dataset Model 1p 2p 3p 2i 3i pi ip 2u up 2in 3in inp pin pni

FB237, 1%
CQDA 46.7 11.8 11.4 33.6 41.2 24.82 17.81 16.45 8.74 10.8 13.86 5.93 5.38 14.82

GNN-QE 36.82 8.96 8.13 33.02 49.28 24.58 14.18 10.73 8.47 4.89 12.31 6.74 4.41 4.09
BetaE 36.80 6.89 5.94 22.84 34.34 17.12 8.72 9.23 5.66 4.44 6.14 5.18 2.54 2.94

FB237 2i, 1%
CQDA 46.7 11.8 11.2 30.35 40.75 23.36 18.28 15.85 8.96 9.36 10.25 5.17 4.46 4.44

GNN-QE 34.81 5.40 5.17 30.12 48.88 23.06 12.65 9.85 5.26 4.26 12.5 4.43 0.71 1.98
BetaE 37.99 5.62 4.48 23.73 35.25 15.63 7.96 9.73 4.56 0.15 0.49 0.62 0.10 0.14

Table 6.4: Comparison of test MRR results for queries on FB15K-237 using the following
training sets – FB237, 1% (resp. FB237 2i, 1%) means that, in addition to all
1p (atomic) queries, only 1% of the complex queries (resp. 2i queries) was used
during training. As CQDA uses a pre-trained link predictor, we also include all 1p
queries when training GNN-QE for a fair comparison.

Model 2p 2i 3i pi ip 2u up 2in 3in inp pin pni

CQD 13.3 35.0 48.5 27.1 20.4 17.6 9.6 3.4 8.2 2.8 1.5 4.6
CQDF 9.3 21.9 32.6 20.0 14.5 13.4 6.4 6.8 7.5 5.5 3.6 4.4
CQDA

F 9.4 24.2 37.3 21.4 16.5 13.9 6.6 8.8 10.0 5.6 4.7 4.4
CQDC 10.9 33.7 47.3 25.6 18.9 16.4 9.4 7.9 12.2 6.6 4.2 5.0
CQDR 6.4 22.2 31.0 16.6 11.2 12.5 4.8 4.7 5.9 4.1 2.0 3.5
CQDA 13.2 35.0 48.5 27.3 20.7 17.6 10.5 13.2 14.9 7.4 7.8 5.5

Table 6.5: Test MRR results for FOL queries on FB15K-237 using the following CQD ex-
tensions: CQD from Arakelyan et al. (2021); Minervini et al. (2022) with the
considered normalisation and negations; CQDF, where we fine-tune all neural
link predictor parameters in CQD; CQDA

F , where we fine-tune all link predictor
parameters in CQDA; CQDR, where we learn a transformation for the entity and
relation embeddings and we use it to replace the initial entity and relation repre-
sentations; and CQDC, where we learn a transformation for the entity and relation
embeddings, and we concatenate it to the initial entity and relation representations.

only 1% of the training queries. This shows that CQDA is a scalable method with a

fast convergence rate that can be trained in a data-efficient manner.

6.5.9 Out-of-Distribution Generalisation
To study the generalisation properties of CQDA, we trained the adaptation layer

on all atomic queries and only 1% of samples for one training query type 2i, one of

the simplest complex query types. We see in table 6.4 that CQDA can generalise to

other types of complex queries not observed during training with an average MRR

difference of 2.9 compared to training on all training query types. CQDA also produces

significantly higher test MRR results than GNN-QE, with an average increase of 5.1
MRR. The greatest degradation in predictive accuracy occurs for the queries containing

negations, with an average decrease of 2.7. This prompts us to conjecture that being

able to answer general EPFO queries is not enough to generalise to the larger set

of queries, which include atomic negation. However, our method can generalise
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on all query types, using only 1% of the 2i queries, with 1496 overall samples for

adaptation.

6.5.10 Fine-Tuning All Model Parameters
One of the reasons for the efficiency of CQDA is that the neural link predictor is not

fine-tuned for query answering, and only the parameters in the adaptation function are

learned. We study the effect of fine-tuning the link predictor using the full training data

for CQD and CQDA on FB15K-237. We consider several variants: 1) CQDF, where we

Fine-tune all neural link predictor parameters in CQD; 2) CQDA
F , where we fine-tune

all link predictor parameters in CQDA, 3) CQDR, where we learn a transformation

for the entity and relation embeddings and we use it to Replace the initial entity and

relation representations, and 4) CQDC, where we learn a transformation for the entity

and relation embeddings, and we Concatenate it to the initial entity and relation

representations.

It can be seen from table 6.5 that CQDA yields the highest test MRR results

across all query types while fine-tuning all the model parameters produces signif-

icant degradation along all query types, which we believe is due to catastrophic

forgetting (Goodfellow et al., 2013) of the pre-trained link predictor.

6.6 Conclusions
In this work, we propose the novel method CQDA for answering complex FOL

queries over KGs, which increases the averaged MRR over the previous state-of-the-

art from 34.4 to 35.1 while using ≤ 30% of query types. Our method uses a single

adaptation layer over neural link predictors, which allows for training in a data-efficient

manner. We show that the method can maintain competitive predictive accuracy even

when using 1% of the training data. Furthermore, our experiments on training on

a subset (1%) of the training queries from a single query type (2i) show that it can

generalise to new queries that were not used during training while being data-efficient.

Our results provide further evidence for how neural link predictors exhibit a form

of compositionality that generalises to the complex structures encountered in the

more general problem of query answering. CQDA is a method for improving this

compositionality while preserving computational efficiency. As a consequence, rather

than designing specialised models trained end-to-end for the query answering task,

we can focus our efforts on improving the representations learned by neural link

predictors, which would then transfer to query answering via efficient adaptation, as

well as other downstream tasks where they have already proved beneficial, such as

clustering, entity classification, and information retrieval.
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6.7 Appendix
6.7.1 Impact of adaptation

We investigate the effect of the adaptation process in CQDA by comparing the score

of the neural link predictor before and after applying the adaptation layer. As we see

from fig. 6.5, the scores before adaptation have a variation of 5.04 with the boundaries

at [−8, 12]. This makes them problematic for complex query answering as discussed in

section 6.4. The Adapted scores have a smaller variation at 0.03 while the maximum

and minimum lie in the range [0, 1].
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7FLARE: Faithful Logic-Aided
Reasoning and Exploration

7.1 Introduction
Complex Reasoning in natural Question Answering (QA) tasks assumes the capability

to explore the problem space of the designated query with a formalised set of facts,

relations, commonsense knowledge and logical implications. In line with this, LLMs

have been enhanced with CoT (Wei et al., 2022b) prompting, which supplements

the QA process by generating intermediate reasoning chains given a set of in-context

examples (Brown et al., 2020a), as shown in fig. 7.1. This allowed for advancement

in commonsense (Madaan et al., 2022), symbolic (Wang et al., 2022b; Sprague

et al., 2024) and mathematical (Jie et al., 2023) reasoning. Although CoT allows

for a problem exploration in natural language steps, such an approach has been

shown to cause performance degradation for reasoning tasks involving multi-step

planning (Valmeekam et al., 2022; Suzgun et al., 2023), problem exploration (Yao

et al., 2022), and arithmetic tasks (Hendrycks et al., 2021c; Madaan and Yazdanbakhsh,

2022a). These discrepancies arise as CoT suffers from a limited ability to decompose,

search, verify and backtrack using intermediate rationale chains (Yao et al., 2022),

cascading hallucinations and errors (Ling et al., 2023) and that natural language

might not be an optimal representation for describing the reasoning process (Li et al.,

2024). Simultaneously, LLM output has been shown to be unfaithful and inconsistent

w.r.t. the intermediate CoT rationale (Jacovi et al., 2024; Lanham et al., 2023a; Turpin

et al., 2023).

To mitigate the problem of CoT faithfulness and allow for more robust reasoning

during QA, Lyu et al. (2023, Faithful CoT) and Logic-LM (Pan et al., 2023) suggested

generating code which is further executed using an external symbolic solver. Pro-

ducing and executing code enables the generation of outputs guided by external

solvers, leveraging search with backtracking to explore the problem space effectively.

However, strict translations of natural language queries into code, such as autofor-
malisation (Szegedy, 2020; Wang et al., 2018b), is a non-trivial task involving direct

inference of implicit commonsense and domain-specific knowledge and the ability

to align abstract and informal concepts directly to constrained formal definitions for

further execution (Wu et al., 2022). An example query, “Do all parts of the aloe vera
plant taste good?”, is challenging to formalize or address with a strict algorithmic
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FLARE

 [Search -> Answer]

 [Path 1] 
{'Result': 'yes'}

Plan 
Explanation

Aloe vera is a plant known for its medicinal
and cosmetic properties... 

Analysis

To address this question, it's essential to
understand the properties and uses of aloe
vera...

Simulation of  Code Execution 

Backtracking

Redo: product(petroleum_derived, Candidate
Variable_2)

 [Path 2]:
   11: Searching: product(petroleum_derived, _) ...

Search Results

Search: query | {'Result': 'yes'}

Multi-hop Logic Based Traversal

[Path 1]: 1: Call: query
  2: Call: combined(aloe_vera, petroleum_derived)
 3:Call: plant(aloe_vera,Candidate_0,Candidate_1)
 4: Search: plant(aloe_vera, medicinal, cosmetic)...

Plan for Answering

Define Key Concepts:
- Define Aloe Vera: Clarify the properties
and uses of aloe vera, including its
medicinal and cosmetic

Code 
Facts 

plant(aloe_vera, medicinal, cosmetic). 
product(petroleum_derived, industrial).
ingredient(emulsifier, oil, water).

Search Goal/Strategy 

query :- combined(aloe_vera,
petroleum_derived).

Relations 

combined(aloe_vera, petroleum_derived) :- 
plant(aloe_vera, _, _) , 
product(petroleum_derived, _) , 
ingredient(emulsifier, _, _).

Measurable
Faithfulness

Explainable
Exploration 

Search with
Backtracking 

LLM only
Reasoning 

Question: Do all parts of the aloe vera plant taste good?

Figure 7.1: A depiction of the plan, code and simulated search in FLARE. Each module is
generated separately and iteratively, allowing us to obtain the final answer. The
green and yellow highlighted text shows the overlap between the facts and the
relations between the code and the simulated search.

solution, as it requires interpretative, deductive and context-dependent reasoning, re-

ferred to as soft or fuzzy reasoning. Using external solvers makes such fuzzy reasoning

impossible and requires consistently generating syntactically correct executable code.

While some LLMs have coding capabilities stemming from their pretraining (Jiang

et al., 2024; Aryabumi et al., 2024), relative code consistency is more probable with

models explicitly trained for coding (Chen et al., 2021).

To overcome these problems, we propose Faithful Logic-Aided Reasoning and Explo-

ration (FLARE), an interpretable method that allows for planning, fuzzy reasoning,

and traversing the problem space with backtracking, exact task decomposition, and

measuring faithfulness. In FLARE, given a natural language query, we prompt an LLM

to sequentially generate a plan that includes an analysis and the logical steps necessary

for formalising and answering the question, a logic programming (Wielemaker et al.,

2012) code that allows formalising the query into a set of facts, relations and their

composition forming the space for exploring that query and the search, which is an

LLM-generated code execution simulation. An illustration of FLARE can be seen in

fig. 7.1. In our framework, the generated code must not be consistently executable by

an external solver, allowing for the soft-formalisation of natural language. Although

we see that even generalist LLMs are able to produce executable code in ≥ 50% of

cases. FLARE allows us to measure the faithfulness of the outcome w.r.t. the simulated

code execution by directly comparing the search paths produced by the external solver

to that LLM generation. This comparison also allows for pinpointing model halluci-

nations and inconsistencies. We systematically study the effectiveness of our method

using 4 general-purpose LLMs of varying scales across 9 diverse QA and 3 logical infer-

ence benchmarks, covering Math World Problems, Multi-hop QA, Relation inference,

deductive and analytical reasoning and show that our method achieves state-of-the-art
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results in 7 out of 9 QA datasets and 2 out of 3 logic datasets in comparison to CoT,

F-CoT and Logic-LM. We also show that the method is competitive for models tuned

for coding, with an average overall increase of 16% over F-Cot and 9% over CoT. Our

findings show that model accuracy strongly correlates with the faithfulness of the

reasoning process towards search traces from the simulated code execution. We also

provide ablations showing that the model can interpretably pinpoint hallucinations,

underutilized knowledge, and the limitations of the search over the problem space.

Our key contributions are the following:

• We introduce FLARE a novel paradigm for logic-aided and interpretable formalisa-

tion and search over the problem space in QA and logic reasoning tasks.

• We perform a systematic evaluation across 9 QA and 3 logical inference benchmarks

and 4 models of varying scales, showing the advantages of using FLARE for QA in a

few-shot setup over prior approaches.

• The modularity of FLARE allows defining a simple ingrained method for mea-

suring model faithfulness, which is further shown to be strongly correlated with

performance.

• We further show that using FLARE allows us to interpretably and rigorously detect

hallucinations along with sub-optimal and inconsistent reasoning patterns.

7.2 Related Work
7.2.1 Reasoning in Natural Language

Few-shot prompting (Brown et al., 2020c) has been shown to be an effective ap-

proach for increasing the reasoning capabilities of LLMs in natural language generation

(Gehrmann et al., 2021; Reif et al., 2022; Sanh et al., 2022). LLM reasoning can be

further enhanced with prompting techniques such as CoT (Wei et al., 2022b), which

attempts to segment reasoning into explicitly written intermediate steps. Concurrent

work has also proposed that models “think step by step” (Kojima et al., 2022b), or di-

vide the problem into subtasks before the solution (Zhou et al., 2023a, Least-to-Most).

These approaches have been shown to suffer from arithmetic inaccuracies (Lewkowycz

et al., 2022; Hendrycks et al., 2021b) and reasoning inconsistencies (Madaan and

Yazdanbakhsh, 2022b). Further attempts have been made to add a planning stage

before reasoning by dividing the process into recursive plan formulation and execution

steps (Yao et al., 2023b; Wang et al., 2023a). The plan generation step in FLARE is

a hybrid technique inspired by these methods but focused on generating a natural

language strategy for formalising the query into code.
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7.2.2 Reasoning with Search
Several lines of work propose using techniques to expand the reasoning paths over

the problem space. Self-consistency decoding (Wang et al., 2023b) is an approach

used to sample many natural language reasoning paths and take a majority vote for an

answer. Another popular approach is Tree-of-Thoughts (ToT; Yao et al., 2023a), which

proposes to explore the query with reasoning similar to a tree traversal, where each

state is created and evaluated using an LLM. Similar techniques try to adapt symbolic

search approaches akin to DFS, BFS (Besta et al., 2024), A∗ (Lehnert et al., 2024) or

other combinations (Gandhi et al., 2024) with direct tuning (Lehnert et al., 2024),

imitation training (Yang et al., 2022) or few-shot prompting (Zhang et al., 2024). It

must be noted that all of these techniques have only been tested in constrained mathe-

matical puzzle-solving and algorithmic domains like the 24 Game (Yang et al., 2022),

Countdown (Wikipedia, 2024), Sorting (Besta et al., 2024), maze solving (Yang et al.,

2022), Sokoban (Lehnert et al., 2024), and others. Although the search component of

FLARE has some similarities to these techniques, we argue that our method allows

for generalistic reasoning with interpretable multi-hop search through simulated code

execution.

7.2.3 Reasoning with Formalisation
Another line of research has tried formalising natural language queries into code (Gao

et al., 2023; Li et al., 2024) or pseudo-code (Chae et al., 2024; Gandhi et al., 2024).

This allows the translation of the query into a strict structure and offloads the reason-

ing and search components to deterministic solvers like Python (Chen et al., 2023),

PDDL (Lyu et al., 2023; Liu et al., 2023), DataLog (Lyu et al., 2023) and others.

While models are capable of synthesising programs (Austin et al., 2021; Nijkamp

et al., 2023) and benefit from the use of code in numerical and algorithmic reasoning

settings (Chen et al., 2023; Gao et al., 2023), the usage of code for general QA has not

been rigorously explored. The reasons are that formalisation from natural language

into a strict and executable code is challenging (Wu et al., 2022), following the ex-

act syntactic constraints of the programming language not abundantly used during

pre-training is onerous (Liu et al., 2024) and can require models explicitly tuned for

coding (Chen et al., 2021). Using an external solver for reasoning also limits the

capability for soft reasoning in commonsense knowledge and implications. Although

we formalise the natural language query into a logic programming Prolog program

during the code generation part of FLARE, we do not explicitly require the code to

be executable and do not use external solvers during inference. This allows for the

further use of the LLM for soft-reasoning to simulate code execution in a logic-based
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Math Word Problems Multi-hop QA Relation

Method GSM8K SVAMP MultiArith ASDiv AQuA StrategyQA Date Sport CLUTRR

Llama− 3.1− 8BF LARE 72.7 86.0 96.3 83.1 62.9 70.2 59.3 76.6 36.8
Llama− 3.1− 8BF −CoT it0 it0 it0 it0 it12.2 53.2 it0 it0 it32
Llama− 3.1− 8BCoT 59.2 58.6 60.1 61.9 35 it2.9 20.9 95.8 42.2

CmDRF LARE 52.4 74.0 84.5 72.2 43.7 67.0 52.3 78.9 29.1
CmDRF −CoT it0 it0 it0 it0 it0 59.7 it0 it0 it8.6
CmDRCoT 46.5 57.3 83.1 37.2 28.3 it21.3 47.4 55.2 29.5

CmDR+F LARE 71.4 83.5 90.4 81.3 55.9 70.8 61.8 77.7 41.0
CmDR+F −CoT it0 it0 it0 it0 it15.4 57.6 it0 it0 it35.3
CmDR+CoT 48.7 81.1 86.6 44.6 44.1 it48.4 79.1 62.6 42.5

GPT − 3.5F LARE it68.1 82.7 98.3 85.4 55.1 65.5 82.4 85.6 49.8
GPT − 3.5F −CoT 75.8 83.0 it95.3 81.7 it53.5 it51.5 73.5 it52.3 12.1
GPT − 3.5CoT 79.8 it82.4 98.2 it75.8 59.4 51.7 it69.9 95.8 4.3

Table 7.1: The following table shows the performance of each of the tested models given a
technique for reasoning. Each bold, underlined, and ititalicised element highlights
the best, second best and worst technique per specific model. The overall best
method per dataset is highlighted in green .

problem space traversal similar to Prolog while circumventing the need for code tuning

a generalist model.

7.2.4 Reasoning Faithfulness
An explanation is considered faithful if it explicitly and accurately describes the

reasoning process of the model during inference (Gilpin et al., 2018; Jacovi and

Goldberg, 2020). In the context of prompting techniques such as CoT, we are interested

in the faithfulness of the intermediate reasoning chains towards the final output.

Faithful intermediate reasoning chains should not just look plausible (Herman, 2017)

but have exact reflections of the problem exploration and reasoning used to arrive

at the final answer. Natural language reasoning chains prevalent in CoT and similar

methods are shown to be unfaithful, either masking the reasoning biases (Turpin et al.,

2023) of the model or outright ignoring the intermediate reasoning (Lanham et al.,

2023b). In FLARE, we introduce a method to seamlessly measure the faithfulness of

the final outcome w.r.t. completed search.

7.3 Methodology
7.3.1 LLM Simulated Search

FLARE comprises three modules for generating a plan, code and simulated search
for answering a natural language query Q = {TQ

1 . . . TQ
|Q|}, where each TQ

i is a token

in the query Q.
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Figure 7.2: The trend of mean model accuracy w.r.t mean faithfulness for all the models.

7.3.2 Generating A Plan
For each query Q, given an LLMM, we initially use instructions IP to prompt it

to generate a plan P, which should be comprised of task explanation, analysis and

a plan for further formalising the query. An example of this can be seen in the plan
section in fig. 7.1. We use in-context few shot examples EP of such plan generations

along with bfgreedy decoding for obtaining the final plan.

Pi ∼ argmaxpM(TP
i | TP

:i−1, EP ,Q, IP) (7.1)

Where Pi and TP
i is the i-th token in the generated plan P and pM is the probability

of the next token over the vocabulary obtained from modelM.

7.3.3 Generating Code
After generating the plan, we use instructions IC to prompt the LLMM to generate

a Prolog code C, an example of which can be seen in fig. 7.1. We append executable

code generation samples Csample to the previous in-context examples EP and obtain

few-shot code generation demonstrations EC = [EP ; Csample]

Ci ∼ arg max pM(T C
i | T C

:i−1EC,Q, IP ,P , IC) (7.2)

Fcode,Rcode,Gcode = EXTRACT (Ci)

Where CiandT
C
i is the i-th token in the generated code C.
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7.3.4 Benefits of Prolog
Prolog is a symbolic logic-programming engine (Bowen, 1979) designed for heuristic

search over Horn Clauses (Chandra and Harel, 1985). As a declarative programming

paradigm (Lloyd, 1994), the code is expressed as the logic of computation, expressed

as a set of facts F and relations R defining the problem space, with the goal G being a

first-order logic combination of them. Prolog employs depth-first search (DFS) (Bowen,

1979) for sub-goal decomposition and traversal of the problem space, satisfying G
through a sequence of steps known as the trace. Each step either confirms/invalidates

a sub-goal, expands the search tree, or retries failed sub-goals with new combinations.

An example of such a search is shown in fig. 7.1. Prolog supports exhaustive search

by exploring all paths that satisfy or fail the goal. This explicit segmentation of

facts, relations, and search strategies simplifies query formalization. As a declarative

language, Prolog enables segmentation using a simple regexp heuristic, referred to

as EXTRACT in eq. (7.2) and eq. (7.3). Including exhaustive traces in-context allows

an LLM to simulate sub-goal decomposition, backtracking, and intermediate goal

invalidation, discussed further in the next paragraph.

7.3.5 Simulating Search
After generating the logic-programming code, we want to simulate program ex-

ecution by generating a problem space traversal trace with our LLM M. We use

instructions IS and update our in-context samples by appending search traces Ssample

constructed from Prolog execution of sample codes Csample, i.e. ES = [EC;Ssample].

Si ∼ arg max pM(T S
i | T S

:i−1EC,Q, IP ,P , IC, C, IS) (7.3)

Asearch,Fsearch,Rsearch = EXTRACT (Si)

Where T S
i is the i-th token in the generated search trace S. During iterative problem

space traversal, we can segment the facts Fsearch, relations Rsearch, completed and

backtracked paths with their answers Asearch used during the search simulation. To

get the final answer we update in-context samples with their correct final answers

Asample from the executed search Ssample, EA = [ES ;Asample] and use instructions IA to

obtain the final answer from the model.

AF inal ∼ arg max pM(TA
i | TA

:i−1EC,Q, IP ,P , IC, C, IS ,S, IA) (7.4)

The prompts used for generating each part in FLARE can be seen in section 7.7 along

with a complete example in table 7.8.
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7.3.6 Detecting Reasoning Inconsistencies
For each query Q given the code C and the simulated search S along with the

extracted facts Fcode,Fsearch and relations Rcode,Rsearch from each designated module,

we aim to detect the inconsistencies during the reasoning process of the LLM. We

use exact string matching between all these facts and relations in code and simulated

search.

∀i,∃j suchthat F i
code = F j

search and ∀v,∃q Rv
code = Rq

search (7.5)

∀j,∃i suchthat F i
code = F j

search and ∀q,∃v Rv
code = Rq

search (7.6)

With this framework in mind, we define

two reasoning failure modes.

Dataset
ChatGPT (gpt-3.5-turbo)

Standard CoT Logic-LM FLARE

PrOntoQA 47.40 67.80 61.00 73.40

LogicalDeduction 40.00 42.33 65.67 58.60

AR-LSAT 20.34 17.31 26.41 27.39

Table 7.2: Comparison of Direct Prompting,
CoT, Logic-LM and FLARE.

In the first failure mode, given that some

fact or relation was used in the simulated

search but did not exist in the generated

code, i.e. ∃jsuchthatF j
search /∈ Fcode, we

claim that the LLM has hallucinated. We

postulate that the model either produced

incomplete knowledge during formalisa-

tion to code or created a piece of non-

existing information during the search. We do not consider facts that emerged during a

direct inference step within the simulated search during our calculation. For example,

if we are dealing with a mathematical query 4 · (5 + 6) =?, the search would involve

separately evaluating the expression 5 + 6 = 11. In this case, 11 will not be treated as a

hallucinated fact within the search but rather as an emergent fact obtained from direct

inference. The second failure mode is the reciprocal case, where a fact or relation

present in the code is not used during the search. We refer to this phenomenon as

sub-optimal reasoning as it shows that the LLM could not explore the problem space

completely or injected unsuitable knowledge during formalisation into code.

7.3.7 Measuring Faithfulness
We propose a method to measure the faithfulness of the LLM reasoning process

when using FLARE. As mentioned in section 7.3.1, for each query in a dataset D =
[Q1, . . . ,Q|D|], we generate a set of codes Φ = [C1, . . . , C|Φ|] and simulated problem

space searches Ψ = [S1, . . . ,S|Ψ|]. We use the Prolog engine to execute all of the codes

Φ and obtain a set of correctly written programs Φ′ and exact search paths Ψ′. As we do

not require explicit programmatic correctness during inference in FLARE for any code

Ci, some Prolog executions resulting in an error are filtered out in Ψ′. To assess model
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reasoning faithfulness towards code formalisations, we compare the search paths Φ′

obtained from Prolog execution with their designated counterparts Φ′
gen generated by

the LLM from the same code. We use ROUGE (Lin, 2004) to compute the matching

score for each executed and simulated search path. In particular, we use ROUGE-Lsum,

which uses the longest common subsequence (LCS) over each line to obtain the final

score. This method fits our cause as a line in a Prolog search execution represents a

single logic step within the traversal. This allows us to measure the similarity of the

reasoning contents and structure in exact and simulated searches.

7.4 Experimental Setup
7.4.1 Datasets

To evaluate FLARE, we use a benchmark of 9 tasks covering Math Word Problems

(MWP), multi-hop QA and relation inference, and 3 common logical reasoning datasets.

For testing numeric and mathematical reasoning, we follow CoT (Wei et al., 2022b) by

including GSM8K (Cobbe et al., 2021), SVAMP (Patel et al., 2021b), MultiArith (Roy

and Roth, 2015), ASDiv (Miao et al., 2020) and AQuA (Ling et al., 2017). Among

these, GSM8K, SVAMP, MultiArith and ASDiv cover elementary and middle school

arithmetic word problems with a set of integers or decimals as the answer. AQuA

is a multiple-choice numerical, symbolic reasoning dataset where each answer is a

mathematical expression containing notations, values and expressions not defined in

the query. We also test FLARE using three multi-hop QA datasets. We use StrategyQA

(Geva et al., 2021), which is a boolean QA task that requires sub-goal decomposition

and a multi-hop reasoning strategy to answer. The example “Do all parts of the aloe
vera plant taste good?” used in fig. 7.1, is taken from StrategyQA. The multi-hop QA

testing also includes Date and Sports Understanding, subsets of BIG-Bench (bench

authors, 2023). The tasks involve inferring an exact date given some calculations in

the relative time period and understanding if an artificially created sports statement

is feasible. Furthermore, we assess FLARE on Relational Inference using CLUTRR

(Sinha et al., 2019), which involves inferring the familial relation between two entities

mentioned in a natural language description of the partial family graph. We evaluate

FLARE on challenging logic inference datasets: ProntoQA (Saparov and He, 2023),

AR-LSAT (Zhong et al., 2021), and LogicalDeductions from BigBench (et al., 2023),

focusing on harder subsets proposed by (Pan et al., 2023). These datasets, covering

deductive, analytical, and logical reasoning, allow us to assess FLARE’s performance.

Details, including descriptions and examples, are in table 7.9 of section 7.7.
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Method CmDRplan−only CmDRF LARE CmDR+plan−only CmDR+F LARE GPT − 3.5plan−only GPT − 3.5F LARE

GSM8K 24.7 52.4 40.7 71.4 36.1 68.1
AQuA 35.0 43.7 55.1 55.9 54.3 55.1
StrategyQA 65.5 67.0 75.7 70.8 62.3 65.5

Table 7.3: The table shows the accuracy of an LLM with FLARE compared to prompting for a
final answer directly after generating (plan-only) a plan P.
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Figure 7.3: The figure shows the percentage of executable code per model (right) and the
accuracy of the executable code when answering the queries (left).

7.4.2 Benchmarks
We compare FLARE with CoT (Wei et al., 2022b) as a prompting method that

reasons using natural language chains and with F-CoT (Lyu et al., 2023) and Logic-LM

(Pan et al., 2023) that formalise the query into a code and offload the reasoning to an

external symbolic solver. We use Llama3.1 (8B) (Dubey et al., 2024), CmDR (30B)

(Cohere, 2024), CmDR+ (100B) (Cohere, 2024) and GPT3.5 (Brown et al., 2020c)

(≥ 100B (Ye et al., 2023)). As the coding model OpenAI Codex (code-DaVinci-002)

(Chen et al., 2021) used in F-CoT has been deprecated, we replace it with the new

GPT3.5 as suggested by OpenAI and recalculate the results accordingly.

7.5 Results
7.5.1 Few-shot prompting

To evaluate FLARE, we use a set of models of varying sizes on diverse benchmarks,

as defined in section 7.4. We compare the performance of each model while using

FLARE, CoT and F-CoT prompting. The results for F-CoT and CoT on all the models are
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computed using the codebase of the original study (Lyu et al., 2023). We additionally

compare Logic-LM and FLARE using the logic reasoning benchmarks proposed in (Pan

et al., 2023).

7.5.2 LLMs for general reasoning
Our results, presented in table 7.1, show that using FLARE allows the LLMs to

achieve state-of-the-art results on 7 out of 9 datasets, with an average 28% increase

over CoT. We can see a clear trend that FLARE increases the performance compared

to CoT and F-CoT for all the models of varying scales. We also see that LLMs that

are not explicitly tuned for coding suffer massive degeneracies when using F-CoT.

We postulate that they are unable to consistently produce executable programs that

satisfy a predefined scheme in F-CoT, thus resulting in an error during execution. This

further highlights the value of simulating program execution using an LLM instead

of using external solvers. The results show that using FLARE yields more benefit on

datasets that require longer chains of multi-hop and symbolic reasoning, like AQuA

and StrategyQA. Our findings in table 7.2 show that FLAREachieves state-of-the-art

results on 2 out of 3 logic inference benchmarks with 10% increase over CoT and 7%
increase over Logic-LM.

7.5.3 LLMs for code generation
To understand the effect of FLARE on models tuned for coding, we use GPT3.5

(Brown et al., 2020a) as it was the OpenAI suggested succession model for Codex

(Chen et al., 2021) which is used in F-CoT and possesses strong coding capabilities

(Ye et al., 2023). The results in table 7.1 show that using FLARE is beneficial for

models that are tuned for coding and boost the accuracy with a 16% increase over

F-CoT and 9% over CoT. The reason is that many natural language queries with

non-trivial formalisations are more suited to be tackled with more commonsense

soft reasoning than direct code execution. This is evident in table 7.1 where FLARE

and CoT are consistently better than F-CoT in StrategyQA, Sports and CLUTRR. The

opposite case of numeric and algorithmic heavy reasoning tasks is also covered by

FLARE as it maintains strong performance similar to F-CoT on MWP problems table 7.1.

Consequently, FLARE allows combining algorithmic formalisation with simulated soft-

reasoning, circumventing the pitfalls of using a deterministic external solver while still

producing a query formalisation and problem space traversal.

7.5.4 Is simulating search useful?
To understand if simulating a search over the problem space is useful, we compare

the performance of FLARE where we only generate the plan without the subsequent
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Model Avg. Number of Paths Avg. #Hops per path Avg. #Fails per path Avg. Total Hops Avg. Total Fails

Incorrect Answers
Llama− 3.1− 8BF LARE 1.55 11.12 1.52 15.09 2.26
CmDRF LARE 1.51 6.55 0.68 10.56 1.39
CmDR+F LARE 0.92 7.52 1.13 8.57 1.32
GPT-3.5 0.68 5.22 0.71 5.32 0.74

Correct Answers

Llama− 3.1− 8BF LARE 1.43 9.12 0.62 12.36 0.96
CmDRF LARE 1.19 7.10 0.42 11.29 0.66
CmDR+F LARE 0.97 7.19 0.42 8.22 0.61
GPT − 3.5F LARE 0.82 5.65 0.26 5.69 0.27

Table 7.4: The table depicts the difference in the average explored paths, hops, and fails
during the reasoning process, which leads to incorrect or correct answers. The
purple colour illustrates that incorrect reasoning paths have fewer explorations
that led to Failed search paths.

code or search components. We refer to this framework setup as plan-only, which can

be seen in fig. 7.1 if we were to use only the plan for answer generation. We completed

this ablation using CmDR, CmDR+, and GPT-3.5, and we used GSM8K, AQuA, and

StrategyQA as our baselines. The results in table 7.3 confirm that all of the models

suffer massive performance degradation from 61.1→ 49.9 when omitting the code and

the search components of FLARE. We hypothesise that this is caused by insufficient

problem space exploration when using the plan-only setting. Furthermore, we have

already seen in table 7.1 that in methods, like F-CoT, that do not use simulated

problem space exploration for soft-reasoning and only rely on plan and code, the

performance also deteriorates even resulting in a complete breakdown of reasoning

over the designated datasets. This can be viewed as a constrained version of FLARE

with code-only execution. Consequently, our results show that simulating problem

space traversal is highly beneficial as it avoids the pitfalls posed by plan-only and

code-only modes by exploring the problem space more rigorously and soft-reasoning

during that traversal instead of using external solvers.

7.5.5 Faithful Reasoning Improves Performance
As described in section 7.3, using FLARE allows us to measure the faithfulness

of the LLM reasoning process by comparing the simulated problem space traversals

Φ′
gen with actual traces Φ′ produced from a symbolic Prolog solver. To do this, we

initially compute the percentage of syntactically correct executable code each LLM

produces. We can see from the right part of fig. 7.3 that all of the models are

capable of producing correct executable Prolog code in 67% of cases on average and

≥ 50% of cases at the very least. This shows that the simulated searches Φ′
gen can be

considered a representative sample that will be further used to accurately measure

the faithfulness of the simulated search w.r.t. the generated code. After measuring

the reasoning faithfulness for each model, we want to understand what impact it
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Model Unique Explorations (%) in Search Relation overlap (%) Unused Code relations (%)

Correct Answers

Llama− 3.1− 8BF LARE 74.14 43.65 5.73
CmDRF LARE 59.06 35.96 4.02
CmDR+F LARE 64.30 34.47 4.54
GPT − 3.5F LARE 64.46 37.55 1.90

Incorrect Answers

Llama− 3.1− 8BF LARE 54.69 35.04 9.28
CmDRF LARE 54.50 32.76 6.23
CmDR+F LARE 44.12 24.98 8.22
GPT − 3.5F LARE 36.02 24.44 6.94

Table 7.5: The table shows how the percentage of unique emergent inferences in search,
overlapping relations between code and search, and unused relations in code
impact answer correctness.

Model Avg. hops per Paths Hallucination (%) Unutilised knowledge (%)

Llama-3.1-8B 9.4 63.3 62.9
CmDR 6.7 54.7 56.9
CmDR+ 7.2 54.3 56.3
GPT-3.5 5.5 49.3 52.1

Table 7.6: The table shows the changes in simulated search statistics when using FLARE w.r.t
model scale from 8B to 100B+. Hallucinations refer to facts and predicates only
used in trace, while unutilised knowledge relates to the facts and relations only
seen in the code.

has on the performance of the LLM. In fig. 7.2, we segment the models w.r.t. their

ROUGE-Lsum scores. The results show that model performance is strongly positively

correlated with reasoning faithfulness. However, we also observe in the left part of

fig. 7.3 that executing semantically precise code results in an accurate answer only

in 47% of cases on average. Indeed, having a simulated search trace with a ROUGE-

Lsum faithfulness score of 1, would be equivalent to simply executing the program as

proposed in F-CoT. Yet we have priorly shown that F-CoT struggles with reasoning tasks

that are hard to formalise and require multi-hop commonsense and soft reasoning.

These two discoveries show that optimal LLM reasoning, conditioned on a search

in the problem space, should be increasingly faithful toward the facts, relations and

the search strategy defined within the code while simultaneously maintaining the

capability for soft-reasoning along more abstractly defined concepts. Our results show

that FLARE allows LLMs to maintain a similar reasoning capacity.

7.5.6 What is important during the search?
We expand the analysis of the simulated search traces to detect the reasons which

can lead to optimal reasoning within an LLM. For this purpose, we calculate several
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statistics, like the average number of explored paths, average and total hops and

failures per path, for each model during the simulated traversal. The failure in a path

is an invalidation of a solution for a sub-goal explored during the search, which is

used for backtracking, as explained in section 7.3. Calculating these statistics is simple

as the search component of FLARE, seen in fig. 7.1, is a structured simulation of a

Prolog trace, where each line contains a hop of reasoning inference. We split these

statistics for the reasoning paths that lead to correct or incorrect outcomes. Our results

in table 7.4 show that LLM performance and reasoning optimally are not directly

connected to the amount of explored paths or multi-hop inferences per path. We

also see that traces that lead to incorrect answers have a higher number of failures

per path and in total. We explain this phenomenon with the hypothesis that LLMs

with traces that were optimal for reasoning and led to correct answers could skip

exploring degenerate solutions due to strong commonsense reasoning capabilities.

Further analyses focus on identifying inconsistencies and failure modes (section 7.3.6).

By comparing relations in code with those in search traces, we measure emergent

hallucinations and unused relations, highlighting areas of sub-optimal reasoning.

Additionally, we assess the uniqueness of emergent facts per inference hop, which

indicates the extent of problem-space exploration (table 7.5). The results in table 7.5

show consistently over each model that, on average, traces that lead to correct answers

had a higher percentage of unique emergent facts (UEF) and overlap in the relations

(OR) used between the code and search, while the portion of underutilized relations

(UR) was lower. This means that optimal reasoning with an LLM requires a great

degree of problem-space exploration with fewer relation hallucinations during the

search and more relation utilization from the defined code. This aligns with our prior

discoveries, which show a strong correlation between simulated search faithfulness

towards the formalised code and model performance. Our framework FLARE has

these reasoning patterns ingrained within its inference pipeline.

7.5.7 The effect of scale
We want to assess the impact of the number of parameters in the model on the

overall performance and faithfulness. The results in fig. 7.4 show no precise relation

between model scale, performance and faithfulness. However, scaled models from the

same family, i.e. CmDR (30B) and CmDR+ (100B), show improvements in reasoning

faithfulness and model performance. We can also see in table 7.6 that as the model

size increases, the average number of hops and the portion of hallucinations and

unutilised knowledge decreases. This further confirms our prior assumptions that

models with strong commonsense soft-reasoning capabilities can skip steps during
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Figure 7.4: The effect of the model parameter scale from 8B to 100B+ on model accuracy
(left) and faithfulness (right).

the search while maintaining the knowledge and structure of the traversal strategy

outlined in the code.

7.6 Conclusion
This work introduces FLARE, a novel approach for logic-aided interpretable for-

malisation and reasoning with simulated search over the problem space. We show

that models of varying scales obtain state-of-the-art results compared to prompting

paradigms like CoT and F-CoT. We further pinpoint that using FLARE allows us to

perform soft-reasoning with simulated search, making it flexible for diverse reasoning

benchmarks. We introduce a method to measure model reasoning faithfulness w.r.t.

the problem formalization ingrained within FLARE. Our results show that model

performance is positively correlated with the faithfulness of the reasoning process.

The systematic studies of the method show the benefits of using simulated search

compared to natural language reasoning and external symbolic solvers. We further

show that using FLARE allows us to interpretably and rigorously detect hallucinations

and sub-optimal and inconsistent reasoning patterns.

Reproducibility Report
To reproduce the results of our study, we provide the complete codebase, processing

pipelines and prompts for each dataset. The only model hyper-parameter we explicitly

fix is the temperature for greedy decoding. We also make the inference of all of the
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models using FLARE, F-CoT and CoT across all of the datasets publicly available for

further experimentation and exploration.

7.7 Appendix
7.7.1 LLM Prompts

We define straight-forward prompts for generating plan, code and search simulation

in FLARE, which can be observed in section 7.7.2.

7.7.2 Dataset Statistics
The datasets used in this study encompass a variety of domains, specifically targeting

the performance of the models in interpreting Math Word Problems, multi-hop question

answering, and relational inference. Table 7.9 provides a detailed breakdown of each

dataset, including the number of few-shot in-context samples (shots), the number of

test samples, and representative examples from each dataset. The datasets provide

a comprehensive basis for evaluating the models’ abilities to handle complex tasks

across different domains, facilitating an in-depth analysis of model performance under

few-shot conditions.

7.7.3 FLARE Pseudo-code
Below, we present the pseudo-code for the execution of the plan, code, and search

procedures in FLARE. The pseudo-code describes the modular pipeline in FLARE for

tackling natural language queries with faithful simulated search.

• bfPlan Generation: This stage creates a structured natural language outline of the

reasoning process, breaking down the query into logical steps and analysis. The

plan serves as the foundation for formalization into a logic-based representation.

• bfCode Generation: Based on the generated plan, a logic programming code

(e.g., in Prolog) is synthesized. This code formalizes the query into a set of facts,

relations, and goals, which collectively define the problem space for reasoning.

• bfSearch Simulation: The generated code is utilized to simulate a search trace

over the problem space. This includes iterative reasoning, backtracking when

goals are unmet, and extracting emergent facts or relations during the process.

Each of these stages is implemented as a modular component. The generation from

each of the stages feeds into the next, allowing seamless integration and incremental

improvement in reasoning accuracy.
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Task Prompt Description

Plan Generation
Generate an explanation
and analysis, and plan to
generate a prompt for writ-
ing a swi-prolog code for
the last task. The 3 sec-
tions should be exactly out-
lined. Your plan should
show enough intermediate
reasoning steps towards the
answer. Construct the plan
as much as you can and de-
scribe the logic specifically.
When constructing the plan
for the code prompt, ac-
tively use swi prolog search
capabilities.

Detailed instructions for
generating an outline and
plan, with an emphasis on
reasoning steps and using
Prolog’s search capabilities.

Code Generation
Write a Prolog code to solve
using the plan. If there
are unknown or stochas-
tic atoms or predicates, fill
in the values for them as
a logical assumption and
add a comment in the same
line Assumed atom/predi-
cate". Do not use write and
read commands within the
code. The code should be
very detailed and utilize swi
prolog capabilities to the
fullest. To run the program,
at the end create a predi-
cate named "query" that re-
turns the correct numerical
answer. The last line of
the program should be the
commented-out driver pred-
icate "query". Write only the
code.

Instructions for generating
a Prolog code based on the
plan with assumptions for
unknown atoms. Empha-
sizes code details and a fi-
nal “query” predicate.

Simulated Search
Ignoring the read com-
mands, explicitly write out
the search paths that are ex-
plored by the code: ####
Here are the paths [Starting
Search Simulation]: ####
[Path 1]:

A task to simulate and dis-
play the search paths that
the Prolog code would fol-
low during execution.

Final Answer
Given the plan, the code
and the explored search
paths answer the question
above. Answer with the
correct numerical answer.
##### Here is the an-
swer:

Final prompt asking for the
correct numerical answer
based on the previous steps.

Table 7.7: Table of Prompts for Plan, Code, Simulated Search, and Final Answer generation
for GSM8K (Cobbe et al., 2021).

Section Content

Question "Can Reiki be stored in a bottle?"

Explanation Reiki is a form of alternative therapy that involves the channeling of

energy to promote healing and relaxation. It is often administered ...

Analysis To address the question of whether Reiki can be stored in a bottle, it is

important to consider...

Plan

• Understand Reiki Energy: ...

• Explore Energy Storage: ...

• Consider Symbolism and Intention: ...

• Evaluate Practicality: ...

• Reflect on Tradition: ...

Code reiki_energy(spiritual_energy). reiki_energy(channeling_through_touch).

store_energy_in_bottle(feasible) :- reiki_energy(spiritual_energy),

reiki_energy(channeling_through_touch).

not_common_practice(store_reiki_in_bottle).

query :-store_energy_in_bottle(feasible),

not_common_practice(store_reiki_in_bottle).

Search

Paths Path 1: – 0: Start of execution: Beginning Search

– 1: Call: query

– 2: Call: store_energy_in_bottle(feasible)

– 3: Call: reiki_energy(spiritual_energy)

– 4: Call: reiki_energy(channeling_through_touch)

– 5: Call: not_common_practice(store_reiki_in_bottle)

– 6: Call: feasible=no

– 7: Fail: feasible=no | ’Result’: ’Search Failed’

– 8: Fail: query | ’Result’: ’Search Failed’

Answer "No, Reiki energy cannot be stored in a bottle based on the logical

evaluation of its abstract, non-physical nature and traditional practices

of Reiki."
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Domain Dataset Shots Test Samples Example

Math
Word

Problems

GSM8K 8 1,319
Q: A robe takes 2 bolts of blue fiber and half that much white fiber.

How many bolts in total does it take?
A: 3

SVAMP 8 1,000 Q: Dan had $3 left with him after he bought a candy bar. If he had $4 at the start, how much did the candy bar cost?A: 1

MultiArith 8 600
Q: A pet store had 13 siamese cats and 5 house cats. During a sale they sold 10 cats.

How many cats do they have left?
A: 8

ASDiv 8 2,096
Q: Adam has five more apples than Jackie. Jackie has nine apples. How many apples does Adam have?

A: 14

AQuA 8 254
Q: A man walks at 5 kmph for 6 hrs and at 4 kmph for 12 hrs. His average speed is
Answer option: A)4 1/3 km/h, B)7 2/3 km/h, C)9 ½ km/h, D)8 km/h, E)81 km/h

A: A

Multi-
hop
QA

StrategyQA 6 2,290
Q: Did Aristotle use a laptop?

A: False

Date
Understanding 10 359

Q: Yesterday was April 30, 2021. What is the date tomorrow in MM/DD/YYYY?
A: "05/02/2021"

Sports
Understanding 10 977

Q: Is the following sentence plausible? Lionel Messi was called for icing?
A: False

Relational
Inference CLUTRR 8 1,042

Q: [Carlos] is [Clarence]’s brother. [Carlos] and his sister, [Annie], went shopping.
asked her mom [Valerie] if she wanted anything, but [Valerie] said no.

How is [Valerie] related to [Clarence]?
A: "mother"

Table 7.9: The statistics and examples of the datasets used in benchmarking. Shots refers to
the number of few-shot in-context samples used during benchmarking.

Table 7.8: Complete example of FLARE

7.7 Appendix 121



References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-

cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. 2023. Gpt-4 technical report. arXiv preprint arXiv:2303.08774.

Priyanka Agrawal, Chris Alberti, Fantine Huot, Joshua Maynez, Ji Ma, Sebastian Ruder,
Kuzman Ganchev, Dipanjan Das, and Mirella Lapata. 2023. Qameleon: Multilingual
qa with only 5 examples. Transactions of the Association for Computational Linguistics,
11:1754–1771.

Ehud Aharoni, Anatoly Polnarov, Tamar Lavee, Daniel Hershcovich, Ran Levy, Ruty
Rinott, Dan Gutfreund, and Noam Slonim. 2014. A Benchmark Dataset for Auto-
matic Detection of Claims and Evidence in the Context of Controversial Topics. In
Proceedings of the First Workshop on Argumentation Mining, pages 64–68, Baltimore,
Maryland. Association for Computational Linguistics.

Kabir Ahuja, Harshita Diddee, Rishav Hada, Millicent Ochieng, Krithika Ramesh, Prachi
Jain, Akshay Nambi, Tanuja Ganu, Sameer Segal, Maxamed Axmed, et al. 2023.
Mega: Multilingual evaluation of generative ai. arXiv preprint arXiv:2303.12528.

Naveed Akhtar, Ajmal Mian, Navid Kardan, and Mubarak Shah. 2021. Advances
in adversarial attacks and defenses in computer vision: A survey. IEEE Access,
9:155161–155196.

Abeer Aldayel and Walid Magdy. 2019. Your Stance is Exposed! Analysing Possible
Factors for Stance Detection on Social Media. Proc. ACM Hum.-Comput. Interact.,
3(CSCW).

Abeer AlDayel and Walid Magdy. 2021. Stance detection on social media: State of the
art and trends. Inf. Process. Manag., 58(4):102597.

Alaaeldin Ali, Hugo Touvron, Mathilde Caron, Piotr Bojanowski, Matthijs Douze, Ar-
mand Joulin, Ivan Laptev, Natalia Neverova, Gabriel Synnaeve, Jakob Verbeek, et al.
2021. Xcit: Cross-covariance image transformers. In Advances in Neural Information
Processing Systems 34: Annual Conference on Neural Information Processing Systems
2021, NeurIPS 2021, December 6-14, 2021, virtual, pages 20014–20027.

Emily Allaway and Kathleen McKeown. 2020. Zero-Shot Stance Detection: A Dataset
and Model using Generalized Topic Representations. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP), pages
8913–8931, Online. Association for Computational Linguistics.

James Allen. 1995. Natural language understanding. Benjamin-Cummings Publishing
Co., Inc.

Saadullah Amin, Stalin Varanasi, Katherine Ann Dunfield, and Günter Neumann. 2020.
Lowfer: Low-rank bilinear pooling for link prediction. In International Conference
on Machine Learning, pages 257–268. PMLR.

References 122

https://doi.org/10.3115/v1/W14-2109
https://doi.org/10.3115/v1/W14-2109
https://doi.org/10.1109/ACCESS.2021.3127960
https://doi.org/10.1109/ACCESS.2021.3127960
https://doi.org/10.1145/3359307
https://doi.org/10.1145/3359307
https://doi.org/10.1016/J.IPM.2021.102597
https://doi.org/10.1016/J.IPM.2021.102597
https://proceedings.neurips.cc/paper/2021/hash/a655fbe4b8d7439994aa37ddad80de56-Abstract.html
https://doi.org/10.18653/v1/2020.emnlp-main.717
https://doi.org/10.18653/v1/2020.emnlp-main.717


Aixiu An, Peng Qian, Ethan Wilcox, and Roger Levy. 2019. Representation of con-
stituents in neural language models: Coordination phrase as a case study. In
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2888–2899, Hong Kong, China. Association for Computa-
tional Linguistics.

John Robert Anderson. 1983. Machine Learning: An Artificial Intelligence Approach,
volume II, volume 2. Morgan Kaufmann.

Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias Hein.
2020. Square attack: A query-efficient black-box adversarial attack via random
search. In Computer Vision - ECCV 2020 - 16th European Conference, Glasgow,
UK, August 23-28, 2020, Proceedings, Part XXIII, volume 12368 of Lecture Notes in
Computer Science, pages 484–501. Springer.

Peter Adam Angeles. 1981. Dictionary of philosophy.

Richard B Angell. 1989. Deducibility, entailment and analytic containment. Directions
in relevant logic, pages 119–143.

Dimo Angelov. 2020. Top2vec: Distributed representations of topics. ArXiv preprint,
abs/2008.09470.

Erik Arakelyan, Arnav Arora, and Isabelle Augenstein. 2023a. Topic-guided sampling
for data-efficient multi-domain stance detection. In Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
ACL 2023, Toronto, Canada, July 9-14, 2023, pages 13448–13464. Association for
Computational Linguistics.

Erik Arakelyan, Daniel Daza, Pasquale Minervini, and Michael Cochez. 2021. Complex
query answering with neural link predictors. In ICLR. OpenReview.net.

Erik Arakelyan, Karen Hambardzumyan, Davit Papikyan, Pasquale Minervini, Aram H.
Markosyan, Albert Gordo, and Isabelle Augenstein. 2024a. With great backbones
comes great adversarial transferability. CoRR. To appear on arXiv.

Erik Arakelyan, Zhaoqi Liu, and Isabelle Augenstein. 2024b. Semantic sensitivities
and inconsistent predictions: Measuring the fragility of NLI models. In Proceedings
of the 18th Conference of the European Chapter of the Association for Computational
Linguistics, EACL 2024 - Volume 1: Long Papers, St. Julian’s, Malta, March 17-22,
2024, pages 432–444. Association for Computational Linguistics.

Erik Arakelyan, Pasquale Minervini, Daniel Daza, Michael Cochez, and Isabelle Au-
genstein. 2023b. Adapting neural link predictors for data-efficient complex query
answering. In Advances in Neural Information Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA,
USA, December 10 - 16, 2023.

References 123

https://doi.org/10.18653/v1/D19-1287
https://doi.org/10.18653/v1/D19-1287
https://doi.org/10.1007/978-3-030-58592-1_29
https://doi.org/10.1007/978-3-030-58592-1_29
https://arxiv.org/abs/2008.09470
https://doi.org/10.18653/V1/2023.ACL-LONG.752
https://doi.org/10.18653/V1/2023.ACL-LONG.752
https://aclanthology.org/2024.eacl-long.27
https://aclanthology.org/2024.eacl-long.27
http://papers.nips.cc/paper_files/paper/2023/hash/55c518a17bd17dcb69aa14d69d085994-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/55c518a17bd17dcb69aa14d69d085994-Abstract-Conference.html


Erik Arakelyan, Pasquale Minervini, Pat Verga, Patrick S. H. Lewis, and Isabelle
Augenstein. 2024c. FLARE: faithful logic-aided reasoning and exploration. CoRR,
abs/2410.11900.

Alejandro Barredo Arrieta, Natalia Díaz Rodríguez, Javier Del Ser, Adrien Bennetot,
Siham Tabik, Alberto Barbado, Salvador García, Sergio Gil-Lopez, Daniel Molina,
Richard Benjamins, et al. 2020. Explainable artificial intelligence (XAI): concepts,
taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion, 58:82–
115.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2020. Translation artifacts in cross-
lingual transfer learning. arXiv preprint arXiv:2004.04721.

Mikel Artetxe and Holger Schwenk. 2019. Massively multilingual sentence embeddings
for zero-shot cross-lingual transfer and beyond. Transactions of the association for
computational linguistics, 7:597–610.

Viraat Aryabumi, Yixuan Su, Raymond Ma, Adrien Morisot, Ivan Zhang, Acyr Locatelli,
Marzieh Fadaee, Ahmet Üstün, and Sara Hooker. 2024. To code, or not to code?
exploring impact of code in pre-training. CoRR, abs/2408.10914.

Akari Asai, Akiko Eriguchi, Kazuma Hashimoto, and Yoshimasa Tsuruoka. 2018.
Multilingual extractive reading comprehension by runtime machine translation.
arXiv preprint arXiv:1809.03275.

Pepa Atanasova, Jakob Grue Simonsen, Christina Lioma, and Isabelle Augenstein.
2020. A diagnostic study of explainability techniques for text classification. In Pro-
ceedings of the 2020 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2020, Online, November 16-20, 2020, pages 3256–3274. Association for
Computational Linguistics.

Sara Atito, Muhammad Awais, and Josef Kittler. 2021. Sit: Self-supervised vision
transformer. arXiv preprint arXiv:2104.03602.

Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and
Zachary G. Ives. 2007. DBpedia: A nucleus for a web of open data. In ISWC/ASWC,
volume 4825 of Lecture Notes in Computer Science, pages 722–735. Springer.

Isabelle Augenstein, Tim Rocktäschel, Andreas Vlachos, and Kalina Bontcheva. 2016.
Stance detection with bidirectional conditional encoding. In Proceedings of the 2016
Conference on Empirical Methods in Natural Language Processing, pages 876–885,
Austin, Texas. Association for Computational Linguistics.

Jacob Austin, Augustus Odena, Maxwell I. Nye, Maarten Bosma, Henryk Michalewski,
David Dohan, Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, et al. 2021.
Program synthesis with large language models. CoRR, abs/2108.07732.

Hayastan Avetisyan and David Broneske. 2023. Large language models and low-
resource languages: An examination of armenian nlp. Findings of the Association for
Computational Linguistics: IJCNLP-AACL 2023 (Findings), pages 199–210.

References 124

https://doi.org/10.48550/ARXIV.2410.11900
https://doi.org/10.1016/J.INFFUS.2019.12.012
https://doi.org/10.1016/J.INFFUS.2019.12.012
https://doi.org/10.48550/ARXIV.2408.10914
https://doi.org/10.48550/ARXIV.2408.10914
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.263
https://doi.org/10.18653/v1/D16-1084
http://arxiv.org/abs/2108.07732


Collin F Baker, Charles J Fillmore, and John B Lowe. 1998. The berkeley framenet
project. In COLING 1998 Volume 1: The 17th International Conference on Computa-
tional Linguistics.

Vineeth Balasubramanian, Shen-Shyang Ho, and Vladimir Vovk. 2014. Conformal pre-
diction for reliable machine learning: theory, adaptations and applications. Newnes.
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